Advertisement

Nitric Oxide Physiology and Pathology

  • David G. HirstEmail author
  • Tracy Robson
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 704)

Abstract

Nitric oxide (NO) is just one member of a new class of gaseous signalling molecules with fundamental actions in biology. In higher vertebrates it has key roles in maintaining haemostasis and in smooth muscle (especially vascular smooth muscle), neurons and the gastrointestinal tract. It is intimately involved in regulating all aspects of our lives from waking, digestion, sexual function, perception of pain and pleasure, memory recall and sleeping. Finally, the way it continues to function in our bodies will influence how we degenerate with age. It will likely play a role in our deaths through cardiovascular disease, stroke, diabetes and cancer. Our ability to control NO signalling and to use NO effectively in therapy must therefore have a major bearing on the future quality and duration of human life.

Key words

Nitric oxide cardiovascular cancer wound healing 

References

  1. 1.
    Wang, R. (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16, 1792–1798.PubMedGoogle Scholar
  2. 2.
    Mustafa, A. K., Gadalla, M. M., Snyder, S. H. (2009) Signaling by gasotransmitters. Sci Signal 2, 1–8.Google Scholar
  3. 3.
    Aranda, M., Pearl, R. G. (2000) Inhaled nitric oxide and pulmonary vasoreactivity. J Clin Monit Comput 16, 393–401.PubMedGoogle Scholar
  4. 4.
    Iyengar, R., Stuehr, D. J., Marletta, M. A. (1987) Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad Sci USA 84, 6369–6373.PubMedGoogle Scholar
  5. 5.
    Hibbs, J. B., Jr., Taintor, R. R., Vavrin, Z., Rachlin, E. M. (1988) Nitric oxide: a cytotoxic activate macrophage effector molecule. Biochem Biophys Res Commun 157, 87–94.PubMedGoogle Scholar
  6. 6.
    Hirst, D., Robson, T. (2007) Targeting nitric oxide for cancer therapy. J Pharm Pharmacol 59, 3–13.PubMedGoogle Scholar
  7. 7.
    Xu, W., Charles, I. G., Moncada, S. (2005) Nitric oxide: orchestrating hypoxia regulation through mitochondrial respiration and the endoplasmic reticulum stress response. Cell Res 15, 63–65.PubMedGoogle Scholar
  8. 8.
    Brown, G. C. (2001) Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta 1504, 46–57.PubMedGoogle Scholar
  9. 9.
    Aguirre, E., Rodriguez-Juarez, F., Bellelli, A., Gnaiger, E., Cadenas, S. (2010) Kinetic model of the inhibition of respiration by endogenous nitric oxide in intact cells. Biochim Biophys Acta Feb 6 [Epub ahead of print].Google Scholar
  10. 10.
    Nisoli, E., Clementi, E., Paolucci, C., Cozzi, V., Tonello, C., Sciorati, C., et al. (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299, 896–899.PubMedGoogle Scholar
  11. 11.
    Bolanos, J. P., Heales, S. J. (2010) Persistent mitochondrial damage by nitric oxide and its derivatives: neuropathological implications. Front Neuroenergetics 2, 1.PubMedGoogle Scholar
  12. 12.
    Palmer, R. M., Ferrige, A. G., Moncada, S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524–526.PubMedGoogle Scholar
  13. 13.
    Palmer, R. M., Ashton, D. S., Moncada, S. (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664–666.PubMedGoogle Scholar
  14. 14.
    Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E., Chaudhuri, G. (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84, 9265–9269.PubMedGoogle Scholar
  15. 15.
    Furchgott, R. F., Vanhoutte, P. M. (1989) Endothelium-derived relaxing and contracting factors. FASEB J 3, 2007–2018.PubMedGoogle Scholar
  16. 16.
    Meng, W., Ayata, C., Waeber, C., Huang, P. L., Moskowitz, M. A. (1998) Neuronal NOS-cGMP dependent ACh-induced relaxation in pial arterioles of endothelial NOS knockout mice. Am J Physiol 274, H411–H415.PubMedGoogle Scholar
  17. 17.
    Lamping, K. G., Nuno, D. W., Shesely, E. G., Maeda, N., Farac, F. M. (2000) Vasodilator mechanisms in the coronary circulation of endothelial nitric oxide synthase-deficient mice. Am J Physiol Heart Circ Physiol 279, H1906–H1912.PubMedGoogle Scholar
  18. 18.
    Seddon, M., Melikian, N., Dworakowski, R., Shabeeh, H., Jiang, B., Byrne, J., Casadei, B., Chowienczyk, P., Shah, A. M. (2009) Effects of neuronal nitric oxide synthase on human coronary artery diameter and blood flow in vivo. Circulation 119, 2656–2662.PubMedGoogle Scholar
  19. 19.
    Jennings, B. L., Donald, J. A. (2010) Mechanisms of nitric oxide-mediated, neurogenic vasodilation in mesenteric resistance arteries of toad, Bufo marinus. Am J Physiol Regul Integr Comp Physiol 298, R767–R775.PubMedGoogle Scholar
  20. 20.
    Talman, W. T., Nitschke Dragon, D. (2007) Neuronal nitric oxide mediates cerebral vasodilatation during acute hypertension. Brain Res 1139, 126–132.PubMedGoogle Scholar
  21. 21.
    Lancaster, J. R., Jr. (1997) A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide 1, 18–30.PubMedGoogle Scholar
  22. 22.
    McMahon, T. J., Pawloski, J. R., Hess, D. T., Piantadosi, C. A., Luchsinger, B. P., Singel, D. J., et al. (2003) S-nitrosohemoglobin is distinguished from other nitrosovasodilators by unique oxygen-dependent responses that support an allosteric mechanism of action. Blood 102, 410–411.PubMedGoogle Scholar
  23. 23.
    Zhang, Z., Naughton, D., Winyard, P. G., Benjamin, N., Blake, D. R., Symons, M. C. (1998) Generation of nitric oxide by a nitrite reductase activity of xanthine oxidase: a potential pathway for nitric oxide formation in the absence of nitric oxide synthase activity. Biochem Biophys Res Commun 249, 767–772.PubMedGoogle Scholar
  24. 24.
    Pinder, A. G., Pittaway, E., Morris, K., James, P. E. (2009) Nitrite directly vasodilates hypoxic vasculature via nitric oxide-dependent and -independent pathways. Br J Pharmacol 157, 1523–1530.PubMedGoogle Scholar
  25. 25.
    Laroux, F. S., Lefer, D. J., Kawachi, S., Scalia, R., Cockrell, A. S., Gray, L., et al. (2000) Role of nitric oxide in the regulation of acute and chronic inflammation. Antioxid Redox Signal 2, 391–396.PubMedGoogle Scholar
  26. 26.
    Rudolph, V., Freeman, B. A. (2009) Cardiovascular consequences when nitric oxide and lipid signalling converge. Circ Res 105, 511–522.Google Scholar
  27. 27.
    Sessa, W. C. (2009) Molecular control of blood flow and angiogenesis: role of nitric oxide. J Thromb Haemost 7, 35–37.PubMedGoogle Scholar
  28. 28.
    Freedman, J. E., Sauter, R., Battinelli, E. M., Ault, K., Knowles, C., Huang, P. L., et al. (1999) Deficient platelet-derived nitric oxide and enhanced hemostasis in mice lacking the NOSIII gene. Circ Res 84, 1416–1421.PubMedGoogle Scholar
  29. 29.
    Irwin, C., Roberts, W., Naseem, K. M. (2009) Nitric oxide inhibits platelet adhesion to collagen through cGMP-dependent and independent mechanisms: the potential role for S-nitrosylation. Platelets 20, 478–486.PubMedGoogle Scholar
  30. 30.
    Roberts, W., Michno, A., Aburima, A., Naseem, K. M. (2009) Nitric oxide inhibits von Willebrand factor-mediated platelet adhesion and spreading through regulation of integrin alpha(IIb)beta(3) and myosin light chain. J Thromb Haemost 7, 2106–2115.PubMedGoogle Scholar
  31. 31.
    Gkaliagkousi, E., Ritter, J., Ferro, A. (2007) Platelet-derived nitric oxide signaling and regulation. Circ Res 101, 654–662.PubMedGoogle Scholar
  32. 32.
    Radomski, M. W., Palmer, R. M., Moncada, S. (1990) Characterization of the L-arginine: nitric oxide pathway in human platelets. Br J Pharmacol 101, 325–328.PubMedGoogle Scholar
  33. 33.
    Radomski, M. W., Palmer, R. M., Moncada, S. (1990) An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA 87, 5193–5197.PubMedGoogle Scholar
  34. 34.
    Naseem, K. M., Riba, R. J. (2008) Unresolved roles of platelet nitric oxide synthase. Thromb Haemost 6, 10–19.Google Scholar
  35. 35.
    Lantoine, F., Brunet, A., Bedioui, F., Devynck, J., Devynck, M. A. (1995) Direct measurement of nitric oxide production in platelets: relationship with cytosolic Ca2+concentration. Biochem Biophys Res Commun 215, 842–848.PubMedGoogle Scholar
  36. 36.
    Boueiz, A., Hassoun, P. M. (2009) Regulation of endothelial barrier function by reactive oxygen and nitrogen species. Microvasc Res 77, 26–34.PubMedGoogle Scholar
  37. 37.
    McQuaid, K. E., Keenan, A. K. (1997) Endothelial barrier dysfunction and oxidative stress: roles for nitric oxide? Exp Physiol 82, 369–376.PubMedGoogle Scholar
  38. 38.
    Gupta, M. P., Ober, M. D., Patterson, C., Al-Hassani, M., Natarajan, V., Hart, C. M. (2001) Nitric oxide attenuates H(2)O(2)-induced endothelial barrier dysfunction: mechanisms of protection. Am J Physiol Lung Cell Mol Physiol 280, L116–L126.PubMedGoogle Scholar
  39. 39.
    Knepler, J. L., Jr., Taher, L. N., Gupta, M. P., Patterson, C., Pavalko, F., Ober, M. D., et al. (2001) Peroxynitrite causes endothelial cell monolayer barrier dysfunction. Am J Physiol Cell Physiol 281, C1064–C1075.PubMedGoogle Scholar
  40. 40.
    Ahluwalia, A., Foster, P., Scotland, R. S., McLean, P. G., Mathur, A., Perretti, M., et al. (2004) Antiinflammatory activity of soluble guanylate cyclase: cGMP-dependent down-regulation of P-selectin expression and leukocyte recruitment. Proc Natl Acad Sci USA 10, 1386–1391.Google Scholar
  41. 41.
    Davis, B. J., Flanagan, B. F., Gilfillan, A. M., Metcalfe, D. D., Coleman, J. W. (2004) Nitric oxide inhibits IgE-dependent cytokine production and Fos and Jun activation in mast cells. J Immunol 173, 6914–6920.PubMedGoogle Scholar
  42. 42.
    Hirst, D. G., Robson, T. (2007) Nitrosative stress in cancer therapy. Front Biosci 12, 3406–3418.PubMedGoogle Scholar
  43. 43.
    Walker, M. W., Kinter, M. T., Roberts, R. J., Spitz, D. R. (1995) Nitric oxide-induced cytotoxicity: involvement of cellular resistance to oxidative stress and the role of glutathione in protection. Pediatr Res 37, 41–49.PubMedGoogle Scholar
  44. 44.
    Clancy, R. M., Abramson, S. B., Kohne, C., Rediske, J. (1997) Nitric oxide attenuates cellular hexose monophosphate shunt response to oxidants in articular chondrocytes and acts to promote oxidant injury. J Cell Physiol 172, 183–191.PubMedGoogle Scholar
  45. 45.
    Cook, J. P. (2003) NO and angiogenesis. Atheroscler Suppl 4, 53–60.Google Scholar
  46. 46.
    Ziche, M., Morbidelli, L., Masini, E., Amerini, S., Granger, H. J., Maggi, C. A., et al. (1994) Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 94, 2036–2044.PubMedGoogle Scholar
  47. 47.
    Papapetropoulos, A., Desai, K. M., Rudic, R. D., Mayer, B., Zhang, R., Ruiz-Torres, M. P., et al. (1997) Nitric oxide synthase inhibitors attenuate transforming-growth-factor-beta 1-stimulated capillary organization in vitro. Am J Pathol 150, 1835–1844.PubMedGoogle Scholar
  48. 48.
    Babaei, S., Teichert-Kuliszewska, K., Monge, J. C., Mohamed, F., Bendeck, M. P., Stewart, D. J. (1998) Role of nitric oxide in the angiogenic response in vitro to basic fibroblast growth factor. Circ Res 82, 1007–1015.PubMedGoogle Scholar
  49. 49.
    Babaei, S., Teichert-Kuliszewska, K., Zhang, Q., Jones, N., Dumont, D. J., Stewart, D. J. (2003) Angiogenic actions of angiopoietin-1 require endothelium-derived nitric oxide. Am J Pathol 162, 1927–1936.PubMedGoogle Scholar
  50. 50.
    Leiper, J., Nandi, M., Torondel, B., Murray-Rust, J., Malaki, M., O’Hara, B., et al. (2007) Disruption of methylarginine metabolism impairs vascular homeostasis. Nat Med 13, 198–220.PubMedGoogle Scholar
  51. 51.
    Fiedler, L. R., Wojciak-Stothard, B. (2009) The DDAH/ADMA pathway in the control of endothelial cell migration and angiogenesis. Biochem Soc Trans 37, 1243–1247.PubMedGoogle Scholar
  52. 52.
    Strijdom, H., Chamane, N., Lochner, A. (2009) Nitric oxide in the cardiovascular system: a simple molecule with complex actions. Cardiovasc J Afr 20, 303–310.PubMedGoogle Scholar
  53. 53.
    Napoli, C., Ignarro, L. J. (2009) Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases. Arch Pharm Res 32, 1103–1108.PubMedGoogle Scholar
  54. 54.
    Kosmicki, M. A. (2009) Long-term use of short- and long-acting nitrates in stable angina pectoris. Curr Clin Pharmacol 4, 132–141.PubMedGoogle Scholar
  55. 55.
    Li, H., Forstermann, U. (2009) Prevention of atherosclerosis by interference with the vascular nitric oxide system. Curr Pharm Des 15, 3133–3145.PubMedGoogle Scholar
  56. 56.
    Frank, S., Kampfer, H., Wetzler, C., Pfeilschifter, J. (2002) Nitric oxide drives skin repair: novel functions of an established mediator. Kidney Int 61, 882–888.PubMedGoogle Scholar
  57. 57.
    Seifter, E., Rettura, G., Barbul, A., Levenson, S. M. (1978) Arginine: an essential amino acid for injured rats. Surgery 84, 224–230.PubMedGoogle Scholar
  58. 58.
    Shi, H. P., Efron, D. T., Most, D., Tantry, U. S., Barbul, A. (2000) Supplemental dietary arginine enhances wound healing in normal but not inducible nitric oxide synthase knockout mice. Surgery 128, 374–378.PubMedGoogle Scholar
  59. 59.
    Barbul, A., Lazarou, S. A., Efron, D. T., Wasserkrug, H. L., Efron, G. (1990) Arginine enhances wound healing and lymphocyte immune responses in humans. Surgery 108, 331–336.PubMedGoogle Scholar
  60. 60.
    Kirk, S. J., Hurson, M., Regan, M. C., Holt, D. R., Wasserkrug, H. L., Barbul, A. (1993) Arginine stimulates wound healing and immune function in elderly human beings. Surgery 114, 155–159.PubMedGoogle Scholar
  61. 61.
    Boykin, J. V. (2010) Wound nitric oxide bioactivity: a promising a diagnostic indictor for diabetic foot ulcer management. J Wound Ostomy Continence Nurs 37, 25–32.PubMedGoogle Scholar
  62. 62.
    Weller, R. B. (2009) Nitric oxide-containing nanoparticles as an antimicrobial agent and enhancer of wound healing. J Invest Dermatol 129, 2335–2337.PubMedGoogle Scholar
  63. 63.
    Filippin, L. I., Moreira, A. J., Marroni, N. P., Xavier, R. M. (2009) Nitric oxide and repair of skeletal muscle injury. Nitric Oxide 21, 157–163.PubMedGoogle Scholar
  64. 64.
    Garthwaite, J., Garthwaite, G., Palmer, R. M., Moncada, S. (1989) NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur J Pharmacol 172, 413–416.PubMedGoogle Scholar
  65. 65.
    Bult, H., Boeckxstaens, G. E., Pelckmans, P. A., Jordaens, F. H., Van Maercke, Y. M., Herman, A. G. (1990) Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature 345, 346–347.PubMedGoogle Scholar
  66. 66.
    Bredt, D. S., Snyder, S. H. (1989) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci USA 86, 9030–9033.PubMedGoogle Scholar
  67. 67.
    Vincent, S. R. (2010) Nitric oxide neurons and neurotransmission. Prog Neurobiol 90, 246–255.PubMedGoogle Scholar
  68. 68.
    Rajfer, J., Aronson, W. J., Bush, P. A., Dorey, F. J., Ignarro, L. J. (1992) Nitric oxide as a mediator of relaxation of the corpus cavernosum in response to nonadrenergic, noncholinergic neurotransmission. N Engl J Med 326, 90–94.PubMedGoogle Scholar
  69. 69.
    Burnett, A. L., Lowenstein, C. J., Bredt, D. S., Chang, T. S., Snyder, S. H. (1992) Nitric oxide: a physiologic mediator of penile erection. Science 257, 401–403.PubMedGoogle Scholar
  70. 70.
    Recio, P., Lopez, P. G., Hernandez, M., Prieto, D., Contreras, J., Garcia-Sacristan, A. (1998) Nitrergic relaxation of the horse corpus cavernosum. Role of cGMP. Eur J Pharmacol 351, 85–94.PubMedGoogle Scholar
  71. 71.
    Rolle, U., Nemeth, L., Puri, P. (2002) Nitrergic innervation of the normal gut and in motility disorders of childhood. J Pediatr Surg 37, 551–567.PubMedGoogle Scholar
  72. 72.
    Shuttleworth, C. W., Xue, C., Ward, S. M., de Vente, J., Sanders, K. M. (1993) Immunohistochemical localization of 3, 5-cyclic guanosine monophosphate in the canine proximal colon: responses to nitric oxide and electrical stimulation of enteric inhibitory neurons. Neuroscience 56, 513–522.PubMedGoogle Scholar
  73. 73.
    Gonzalez, C., Barroso, C., Martin, C., Gulbenkian, S., Estrada, C. (1997) Neuronal nitric oxide synthase activation by vasoactive intestinal peptide in bovine cerebral arteries. J Cereb Blood Flow Metab 17, 977–984.PubMedGoogle Scholar
  74. 74.
    Toda, N., Ayajikim, K., Okamura, T. (2009) Cerebral blood flow regulation by nitric oxide: the recent advances. Pharmacol Rev 61, 62–97.PubMedGoogle Scholar
  75. 75.
    Lancaster, F. E. (1995) Alcohol and the brain: what’s NO got to do with it? Metab Brain Dis 10, 125–133.PubMedGoogle Scholar
  76. 76.
    Williams, J. A., Vincent, S. R., Reiner, P. B. (1997) Nitric oxide production in rat thalamus changes with behavioral state, local depolarization, and brainstem stimulation. J Neurosci 17, 420–427.PubMedGoogle Scholar
  77. 77.
    Hars, B. (1999) Endogenous nitric oxide in the rat pons promotes sleep. Brain Res 816, 209–219.PubMedGoogle Scholar
  78. 78.
    Tayfun Uzbay, I., Oglesby, M. W. (2001) Nitric oxide and substance dependence. Neurosci Biobehav Rev 25, 43–52.PubMedGoogle Scholar
  79. 79.
    Rezvani, A. H., Grady, D. R., Peek, A. E., Pucilowski, O. (1995) Inhibition of nitric oxide synthesis attenuates alcohol consumption in two strains of alcohol-preferring rats. Pharmacol Biochem Behav 50, 265–270.PubMedGoogle Scholar
  80. 80.
    Lallemand, F., De Witte, P. (1997) L-NNA decreases cortical vascularization, alcohol preference and withdrawal in alcoholic rats. Pharmacol Biochem Behav 58, 753–761.PubMedGoogle Scholar
  81. 81.
    Adams, M. L., Cicero, T. J. (1998) Alcohol intoxication and withdrawal: the role of nitric oxide. Alcohol 16, 153–158.PubMedGoogle Scholar
  82. 82.
    Vleeming, W., Rambali, B., Opperhuizen, A. (2002) The role of nitric oxide in cigarette smoking and nicotine addiction. Nicotine Tob Res 4, 341–348.PubMedGoogle Scholar
  83. 83.
    Liu, C., Feng, S., van Heemst, J., McAdam, K. G. (2010) New insights into the formation of volatile compounds in mainstream cigarette smoke. Anal Bioanal Chem 396, 5, 1817–1830.Google Scholar
  84. 84.
    Vleeming, W., Rambali, B., Opperhuizen, A. (2002 Aug) The role of nitric oxide in cigarette smoking and nicotine addiction. Nicotine Tob Res 4, 3, 341–348.PubMedGoogle Scholar
  85. 85.
    Thebaud, B., Arnal, J. F., Mercier, J. C., Dinh-Xuan, A. T. (1999 Jul) Inhaled and exhaled nitric oxide. Cell Mol Life Sci 55, 1103–1112.PubMedGoogle Scholar
  86. 86.
    Pogun, S., Kuhar, M. J. (1994) Regulation of neurotransmitter reuptake by nitric oxide. Ann N Y Acad Sci 738, 305–315.PubMedGoogle Scholar
  87. 87.
    Dhir, A., Kulkarni, S. K. (2007) Involvement of nitric oxide (NO) signaling pathway in the antidepressant action of bupropion, a dopamine reuptake inhibitor. Eur J Pharmacol 568, 177–185.PubMedGoogle Scholar
  88. 88.
    Govind, A. P., Vezina, P., Green, W. N. (2009) Nicotine-induced upregulation of nicotinic receptors: underlying mechanisms and relevance to nicotine addiction. Biochem Pharmacol 78, 756–765.PubMedGoogle Scholar
  89. 89.
    Itzhak, Y., Martin, J. L., Black, M. D., Huang, P. L. (1998) The role of neuronal nitric oxide synthase in cocaine-induced conditioned place preference. Neuroreport 9, 2485–2488.PubMedGoogle Scholar
  90. 90.
    Manzaned, C., Aguilar, M. A., Do Couto, B. R., Rodriguez-Arias, M., Minarro, J. (2009) Involvement of nitric oxide synthesis in sensitization to the rewarding effects of morphine. Neurosci Lett 464, 67–70.Google Scholar
  91. 91.
    Zarrindast, M. R., Karami, M., Sepehri, H., Sahraei, H. (2002) Influence of nitric oxide on morphine-induced conditioned place preference in the rat central amygdala. Eur J Pharmacol 453, 81–89.PubMedGoogle Scholar
  92. 92.
    Anderson, K. L., Itzhak, Y. (2003) Inhibition of neuronal nitric oxide synthase suppresses the maintenance but not the induction of psychomotor sensitization to MDMA (℈Ecstasy℉) and p-chloroamphetamine in mice. Nitric Oxide 9, 24–32.PubMedGoogle Scholar
  93. 93.
    Kielstein, A., Tsikas, D., Galloway, G. P., Mendelson, J. E. (2007) Asymmetric dimethylarginine (ADMA) – a modulator of nociception in opiate tolerance and addiction? Nitric Oxide 17, 55–59.PubMedGoogle Scholar
  94. 94.
    Fricchione, G., Stefano, G. B. (2005) Placebo neural systems: nitric oxide, morphine and the dopamine brain reward and motivation circuitries. Med Sci Monit 11, MS54–MS65.PubMedGoogle Scholar
  95. 95.
    Ying, L., Hofseth, L. J. (2007) An emerging role for endothelial nitric oxide synthase in chronic inflammation and cancer. Cancer Res 67, 1407–1410.PubMedGoogle Scholar
  96. 96.
    Muller-Hubenthal, B., Azemar, M., Lorenzen, D., Huber, M., Freudenberg, M. A., Galanos, C., et al. (2009) Tumour Biology: tumour-associated inflammation versus antitumor immunity. Anticancer Res 29, 4795–4805.PubMedGoogle Scholar
  97. 97.
    Yang, G. Y., Taboada, S., Liao, J. (2009) Induced nitric oxide synthase as a major player in the oncogenic transformation of inflamed tissue. Methods Mol Biol 512, 119–156.PubMedGoogle Scholar
  98. 98.
    Fraser, M., Chan, S. L., Chan, S. S., Fiscus, R. R., Tsang, B. K. (2006) Regulation of p53 and suppression of apoptosis by the soluble guanylyl cyclase/cGMP pathway in human ovarian cancer cells. Oncogene 25, 2203–2212.PubMedGoogle Scholar
  99. 99.
    Doi, K., Akaike, T., Horie, H., Noguchi, Y., Fujii, S., Beppu, T., et al. (1996) Excessive production of nitric oxide in rat solid tumor and its implication in rapid tumor growth. Cancer 77, 1598–1604.PubMedGoogle Scholar
  100. 100.
    Roberts, D. D., Isenberg, J. S., Ridnour, L. A., Wink, D. A. (2007) Nitric oxide and its gatekeeper thrombospondin-1 in tumor angiogenesis. Clin Cancer Res 13, 795–798.PubMedGoogle Scholar
  101. 101.
    Mocellin, S. (2009) Nitric oxide: cancer target or anticancer agent? Curr Cancer Drug Targets 9, 214–236.PubMedGoogle Scholar
  102. 102.
    Coulter, J. A., McCarthy, H. O., Xiang, J., Roedl, W., Wagner, E., Robson, T., et al. (2008) Nitric oxide – a novel therapeutic for cancer. Nitric Oxide 19, 192–198.PubMedGoogle Scholar
  103. 103.
    Yasuda, H., Yamaya, M., Nakayama, K., Sasaki, T., Ebihara, S., Kanda, A., et al. (2006) Randomized phase II trial comparing nitroglycerin plus vinorelbine and cisplatin with vinorelbine and cisplatin alone in previously untreated stage IIIB/IV non-small-cell lung cancer. J Clin Oncol 24, 688–694.PubMedGoogle Scholar
  104. 104.
    Seimens, D. R., Heaton, J., Adams, M., Graham, C. (2007) A phase I/II pilot trial of low-dose, sustained-release GTN for prostate cancer patients with recurrence after primary therapy. Nitric Oxide 17, S15.Google Scholar
  105. 105.
    Morton, D. B., Hudson, M. L., Waters, E., O‘Shea, M. (1999) Soluble guanylyl cyclases in Caenorhabditis elegans: NO is not the answer. Curr Biol 12, R546–R547.Google Scholar
  106. 106.
    Morton, D. B. (2004) Invertebrates yield a plethora of atypical guanylyl cyclases. Mol Neurobiol 29, 97–116.PubMedGoogle Scholar
  107. 107.
    Leitner, M., Vandelle, E., Gaupels, F., Bellin, D., Delledonne, M. (2009) NO signals in the haze: nitric oxide signaling in plant defense. Curr Opin Plant Biol 12, 451–458.PubMedGoogle Scholar
  108. 108.
    Delledonne, M., Xia, Y., Dixon, R. A., Lamb, C. (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394, 585–588.PubMedGoogle Scholar
  109. 109.
    Wilson, I. D., Neill, S. J., Hancock, J. T. (2008) Nitric oxide synthesis and signaling in plants. Plant Cell Environ 31, 622–631.PubMedGoogle Scholar
  110. 110.
    Sudhamsu, J., Crane, B. R. (2009) Bacterial nitric oxide synthases: what are they good for? Trends Microbiol 17, 212–218.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Pharmacy, Queen’s University BelfastBelfastUK

Personalised recommendations