Skip to main content

Automated Isolation and Processing of Adipose-Derived Stem and Regenerative Cells

  • Protocol
  • First Online:
Adipose-Derived Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 702))

Abstract

The popularity of nonhematopoietic, adult tissue-derived stem and progenitor cells for use as a cellular research tool, and ultimately as a clinical therapeutic, has increased exponentially over the past decade. Almost all adult-derived stem/progenitor cells (autologous and allogeneic), with one exception, require at least some ex vivo expansion or further manipulation prior to use to satisfy efficacy and safety requirements for preclinical or clinical use. The principal reason is the relatively low frequency of these therapeutically valuable cells within any given adult tissue, except for adipose tissue, which has been shown to have at least two log greater concentrations of these progenitor cells. Therefore, use of autologous adipose-derived cells as both a research tool and cell therapeutic is feasible and has been shown to be both safe and efficacious in preclinical and clinical models of injury and disease. The development and utilization of automated processes and instrumentation such as Cytori Therapeutics’ Celution® System to reduce variability and increase quality of the recovered cells is requisite for clinical use and preferred by basic researchers. Here, use of an automated, closed processing platform for isolation and concentration of adipose-derived stem and regenerative cells is described, including a profile of the isolated cells immediately prior to use, and commonly used methods to quantify and qualitatively assess the recovered cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanz-Ruiz R, Fernández-Santos E, Domínguez-Muñoa M, Parma R, Villa A, Fernández L, Sánchez PL, Fernández-Avilés F (2009) Early translation of adipose-derived cell therapy for cardiovascular disease. Cell Transplant 18, 245–54.

    Article  PubMed  Google Scholar 

  2. Cho HJ, Lee J, Wecker A, Yoon YS (2006) Bone marrow-derived stem cell therapy in ischemic heart disease. Regen Med 1, 337–45.

    Article  PubMed  CAS  Google Scholar 

  3. Gil-Perotín S, Alvarez-Buylla A, García-Verdugo JM (2009) Identification and characterization of neural progenitor cells in the adult mammalian brain. Adv Anat Embryol Cell Biol 203, 1–101.

    Article  PubMed  Google Scholar 

  4. Steindler DA (2007) Stem cells, regenerative medicine, and animal models of disease. ILAR J 48, 323–38.

    Article  PubMed  CAS  Google Scholar 

  5. Kakinuma S, Nakauchi H, Watanabe M (2009) Hepatic stem/progenitor cells and stem-cell transplantation for the treatment of liver disease. J Gastroenterol 44,167–72.

    Article  PubMed  Google Scholar 

  6. Humphreys BD, Bonventre JV (2007) The contribution of adult stem cells to renal repair. Nephrol Ther 3, 3–10.

    Article  PubMed  CAS  Google Scholar 

  7. Schabort EJ, Myburgh KH, Wiehe JM, Torzewski J, Niesler CU (2009) Potential myogenic stem cell populations: sources, plasticity, and application for cardiac repair. Stem Cells Dev 18, 813–30.

    Article  PubMed  Google Scholar 

  8. Quevedo HC, Hatzistergos KE, Oskouei BN, Feigenbaum GS, Rodriguez JE, Valdes D, Pattany PM, Zambrano JP, Hu Q, McNiece I, Heldman AW, Hare JM (2009) Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci USA 106, 14022–7.

    Article  PubMed  Google Scholar 

  9. Alt E, Pinkernell K, Scharlau M, Coleman M, Fotuhi P, Nabzdyk C, Gehmert S, Song YH (2009) Effect of freshly isolated autologous tissue resident stromal cells on cardiac function and perfusion following acute myocardial infarction. Int J Cardiol. doi:10.1016/j.ijcard.2009.03.124 DOI:dx.doi.org.

    Google Scholar 

  10. Ahrens N, Tormin A, Paulus M, Roosterman D, Salama A, Krenn V, Neumann U, Scheding S (2004) Mesenchymal stem cell content of human vertebral bone marrow. Transplantation 78, 925–9.

    Article  PubMed  Google Scholar 

  11. Ogawa R, Mizuno H, Watanabe A, Migita M, Hyakusoku H, Shimada T (2004) Adipogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice-including relationship of sex differences. Biochem Biophys Res Commun 319, 511–7.

    Article  PubMed  CAS  Google Scholar 

  12. Dudas JR, Losee JE, Penascino VM, Smith DM, Cooper GM, Mooney MP, Jiang S, Rubin JP, Marra KG (2008) Leporine-derived adipose precursor cells exhibit in vitro osteogenic potential. J Craniofac Surg 19, 360–8.

    Article  PubMed  Google Scholar 

  13. Aksu AE, Rubin JP, Dudas JR, Marra KG (2008) Role of gender and anatomical region on induction of osteogenic differentiation of human adipose-derived stem cells. Ann Plast Surg 60, 306–22.

    Article  PubMed  CAS  Google Scholar 

  14. Girolamo LD, Lopa S, Arrigoni E, Sartori MF, Preis FW, Brini AT (2009) Human adipose-derived stem cells isolated from young and elderly women: their differentiation potential and scaffold interaction during in vitro osteoblastic differentiation. Cytotherapy, 1–11.

    Google Scholar 

  15. Zhu M, Kohan E, Bradley J, Hedrick M, Benhaim P, Zuk P (2009) The effect of age on osteogenic, adipogenic and proliferative potential of female adipose-derived stem cells. J Tissue Eng Regen Med 3, 290–301.

    Article  PubMed  CAS  Google Scholar 

  16. Geer EB, Shen W (2009) Gender differences in insulin resistance, body composition, and energy balance. Gend Med 6 Suppl 1, 60–75.

    Article  PubMed  Google Scholar 

  17. Björntorp P (1996) The regulation of adipose tissue distribution in humans. Int J Obes Relat Metab Disord 20, 291–302.

    PubMed  Google Scholar 

  18. Frisbee JC (2007) Vascular dysfunction in obesity and insulin resistance. Microcirculation 14, 269–71.

    Article  PubMed  CAS  Google Scholar 

  19. Butterwick KJ, Nootheti PK, Hsu JW, Goldman MP (2007) Autologous fat transfer: an in-depth look at varying concepts and techniques. Facial Plast Surg Clin North Am 15, 99–111.

    Article  PubMed  Google Scholar 

  20. Gonzalez AM, Lobocki C, Kelly CP, Jackson IT (2007) An alternative method for harvest and processing fat grafts: an in vitro study of cell viability and survival. Plast Reconstr Surg 120, 285–94.

    Article  PubMed  CAS  Google Scholar 

  21. Keck M, Janke J, Ueberreiter K (2009) Viability of preadipocytes in vitro: the influence of local anesthetics and pH. Dermatol Surg 35, 1251–7.

    Article  PubMed  CAS  Google Scholar 

  22. Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C (2008) Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45, 115–20.

    Article  PubMed  CAS  Google Scholar 

  23. Hoying JB, Boswell CA, Williams SK (1996) Angiogenic potential of microvessel fragments established in three-dimensional collagen gels. In Vitro Cell Dev Biol Anim 32, 409–19.

    Article  PubMed  CAS  Google Scholar 

  24. Williams SK, McKenney S, Jarrell BE (1995) Collagenase lot selection and purification for adipose tissue digestion. Cell Transplant 4, 281–9.

    Article  PubMed  CAS  Google Scholar 

  25. Fain JN (1975) Isolation of free brown and white fat cells. Methods Enzymol 35, 555–61.

    Article  PubMed  CAS  Google Scholar 

  26. Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Halvorsen YD, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24, 376–85.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin C. Hicok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hicok, K.C., Hedrick, M.H. (2011). Automated Isolation and Processing of Adipose-Derived Stem and Regenerative Cells. In: Gimble, J., Bunnell, B. (eds) Adipose-Derived Stem Cells. Methods in Molecular Biology, vol 702. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-960-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-960-4_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-959-8

  • Online ISBN: 978-1-61737-960-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics