Skip to main content

Gel-Based and Gel-Free Proteomic Technologies

  • Protocol
  • First Online:
Book cover Adipose-Derived Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 702))

Abstract

Proteomics refers to the analysis of expression, localization, functions, posttranslational modifications, and interactions of proteins expressed by a genome at a specific condition and at a specific time. Mass spectrometry (MS)-based proteomic methods have emerged as a key technology for unbiased systematic and high-throughput identification and quantification of complex protein mixtures. These methods have the potential to reveal unknown and novel changes in protein interactions and assemblies that regulate cellular and physiological processes. Both gel-based (one-dimensional [1D] gel electrophoresis, two-dimensional [2D] polyacrylamide gel electrophoresis, 2D difference in-gel electrophoresis [DIGE]) and gel-free (liquid chromatography [LC], capillary electrophoresis) approaches have been developed and utilized in a variety of combinations to separate proteins prior to mass spectrometric analysis. Detailed protocols for global proteomic analysis from adipose-derived stem cells (ASCs) using two central strategies, 2D-DIGE-MS and 2D-LC-MS, are presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P., and Hedrick, M. H. (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13, 4279–95.

    Article  PubMed  CAS  Google Scholar 

  2. Gimble, J. and Guilak, F. (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5, 362–9.

    Article  PubMed  Google Scholar 

  3. Bunnell, B. A., Estes, B. T., Guilak, F., and Gimble, J. M. (2008) Differentiation of adipose stem cells. Methods Mol Biol 456, 155–71.

    Article  PubMed  Google Scholar 

  4. Celis, J. E., Moreira, J. M., Cabezon, T., Gromov, P., Friis, E., Rank, F., and Gromova, I. (2005) Identification of extracellular and intracellular signaling components of the mammary adipose tissue and its interstitial fluid in high risk breast cancer patients: toward dissecting the molecular circuitry of epithelial-adipocyte stromal cell interactions. Mol Cell Proteomics 4, 492–522.

    Article  PubMed  CAS  Google Scholar 

  5. DeLany, J. P., Floyd, Z. E., Zvonic, S., Smith, A., Gravois, A., Reiners, E., Wu, X. Y., Kilroy, G., Lefevre, M., and Gimble, J. M. (2005) Proteomic analysis of primary cultures of human adipose-derived stem cells – modulation by adipogenesis. Mol Cell Proteomics 4, 731–40.

    Article  PubMed  CAS  Google Scholar 

  6. Kim, W. S., Park, B. S., Kim, H. K., Park, J. S., Kim, K. J., Choi, J. S., Chung, S. J., Kim, D. D., and Sung, J. H. (2008) Evidence supporting antioxidant action of adipose-derived stem cells: protection of human dermal fibroblasts from oxidative stress. J Dermatol Sci 49, 133–42.

    Article  PubMed  CAS  Google Scholar 

  7. Noel, D., Caton, D., Roche, S., Bony, C., Lehmann, S., Casteilla, L., Jorgensen, C., and Cousin, B. (2008) Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp Cell Res 314, 1575–84.

    Article  PubMed  CAS  Google Scholar 

  8. Roche, S., Delorme, B., Oostendorp, R. A., Barbet, R., Caton, D., Noel, D., Boumediene, K., Papadaki, H. A., Cousin, B., Crozet, C., Milhavet, O., Casteilla, L., Hatzfeld, J., Jorgensen, C., Charbord, P., and Lehmann, S. (2009) Comparative proteomic analysis of human mesenchymal and embryonic stem cells: towards the definition of a mesenchymal stem cell proteomic signature. Proteomics 9, 223–32.

    Article  PubMed  CAS  Google Scholar 

  9. Zvonic, S., Lefevre, M., Kilroy, G., Floyd, Z. E., DeLany, J. P., Kheterpal, I., Gravois, A., Dow, R., White, A., Wu, X., and Gimble, J. M. (2007) Secretome of primary cultures of human adipose-derived stem cells: modulation of serpins by adipogenesis. Mol Cell Proteomics 6, 18–28.

    PubMed  CAS  Google Scholar 

  10. Cravatt, B. F., Simon, G. M., and Yates, J. R., 3rd (2007) The biological impact of mass-spectrometry-based proteomics. Nature 450, 991–1000.

    Article  PubMed  CAS  Google Scholar 

  11. Devarajan, P. (2007) Proteomics for biomarker discovery in acute kidney injury. Semin Nephrol 27, 637–51.

    Article  PubMed  CAS  Google Scholar 

  12. Merchant, M. L. and Klein, J. B. (2007) Proteomics and diabetic nephropathy. Semin Nephrol 27, 627–36.

    Article  PubMed  CAS  Google Scholar 

  13. Conrotto, P. and Souchelnytskyi, S. (2008) Proteomic approaches in biological and medical sciences: principles and applications. Exp Oncol 30, 171–80.

    PubMed  CAS  Google Scholar 

  14. Lambert, J. P., Ethier, M., Smith, J. C., and Figeys, D. (2005) Proteomics: from gel based to gel free. Anal Chem 77, 3771–87.

    Article  PubMed  CAS  Google Scholar 

  15. Abu-Farha, M., Elisma, F., Zhou, H., Tian, R., Asmer, M. S., and Figeys, D. (2009) Proteomics: from technology developments to biological applications. Anal Chem 81, 4585–99.

    Article  PubMed  CAS  Google Scholar 

  16. Malmstrom, J., Lee, H., and Aebersold, R. (2007) Advances in proteomic workflows for systems biology. Curr Opin Biotechnol 18, 378–84.

    Article  PubMed  CAS  Google Scholar 

  17. Ong, S. E. and Mann, M. (2005) Massspectrometry-based proteomics turns quantitative. Nat Chem Biol 1, 252–62.

    Article  PubMed  CAS  Google Scholar 

  18. Fournier, M. L., Gilmore, J. M., Martin-Brown, S. A., and Washburn, M. P. (2007) Multidimensional separations-based shotgun proteomics. Chem Rev 107, 3654–86.

    Article  PubMed  CAS  Google Scholar 

  19. O’Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250, 4007–21.

    PubMed  Google Scholar 

  20. Gorg, A., Weiss, W., and Dunn, M. J. (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4, 3665–85.

    Article  PubMed  CAS  Google Scholar 

  21. Wittmann-Liebold, B., Graack, H. R., and Pohl, T. (2006) Two-dimensional gel ­electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics 6, 4688–703.

    Article  PubMed  Google Scholar 

  22. Marouga, R., David, S., and Hawkins, E. (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382, 669–78.

    Article  PubMed  CAS  Google Scholar 

  23. Kheterpal, I., Coleman, L., Ku, G., Wang, Z. Q., Ribnicky, D., and Cefalu, W. T. (2010) Regulation of insulin action by an extract of Artemisia dracunculus L. in primary human skeletal muscle culture – a proteomics approach. Phytother Res 24, 1278–84.

    Article  PubMed  CAS  Google Scholar 

  24. Aebersold, R. and Mann, M. (2003) Mass spectrometry-based proteomics. Nature 422, 198–207.

    Article  PubMed  CAS  Google Scholar 

  25. Gygi, S. P., Rist, B., Griffin, T. J., Eng, J., and Aebersold, R. (2002) Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J Proteome Res 1, 47–54.

    Article  PubMed  CAS  Google Scholar 

  26. Salim, K., Kehoe, L., Minkoff, M. S., Bilsland, J. G., Munoz-Sanjuan, I., and Guest, P. C. (2006) Identification of differentiating neural progenitor cell markers using shotgun isobaric tagging mass spectrometry. Stem Cells Dev 15, 461–70.

    Article  PubMed  CAS  Google Scholar 

  27. Griffiths, S. D., Burthem, J., Unwin, R. D., Holyoake, T. L., Melo, J. V., Lucas, G. S., and Whetton, A. D. (2007) The use of isobaric tag peptide labeling (iTRAQ) and mass spectrometry to examine rare, primitive hematopoietic cells from patients with chronic myeloid leukemia. Mol Biotechnol 36, 81–9.

    Article  PubMed  CAS  Google Scholar 

  28. Seshi, B. (2006) An integrated approach to mapping the proteome of the human bone marrow stromal cell. Proteomics 6, 5169–82.

    Article  PubMed  CAS  Google Scholar 

  29. Thon, J. N., Schubert, P., Duguay, M., Serrano, K., Lin, S., Kast, J., and Devine, D. V. (2008) Comprehensive proteomic analysis of protein changes during platelet storage requires complementary proteomic approaches. Transfusion 48, 425–35.

    Article  PubMed  CAS  Google Scholar 

  30. Wu, W. W., Wang, G. H., Baek, S. J., and Shen, R. F. (2006) Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel-or LC-MALDITOF/TOF. J Proteome Res 5, 651–58.

    Article  PubMed  CAS  Google Scholar 

  31. Greengauz-Roberts, O., Stoppler, H., Nomura, S., Yamaguchi, H., Goldenring, J. R., Podolsky, R. H., Lee, J. R., and Dynan, W. S. (2005) Saturation labeling with cysteine-reactive cyanine fluorescent dyes provides increased sensitivity for protein expression profiling of laser-microdissected clinical specimens. Proteomics 5, 1746–57.

    Article  PubMed  CAS  Google Scholar 

  32. Shadforth, I. P., Dunkley, T. P., Lilley, K. S., and Bessant, C. (2005) i-Tracker: for quantitative proteomics using iTRAQ. BMC Genomics 6, 145.

    Article  PubMed  CAS  Google Scholar 

  33. Lin, W. T., Hung, W. N., Yian, Y. H., Wu, K. P., Han, C. L., Chen, Y. R., Chen, Y. J., Sung, T. Y., and Hsu, W. L. (2006) Multi-Q: a fully automated tool for multiplexed protein quantitation. J Proteome Res 5, 2328–38.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indu Kheterpal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Scherp, P., Ku, G., Coleman, L., Kheterpal, I. (2011). Gel-Based and Gel-Free Proteomic Technologies. In: Gimble, J., Bunnell, B. (eds) Adipose-Derived Stem Cells. Methods in Molecular Biology, vol 702. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-960-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-960-4_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-959-8

  • Online ISBN: 978-1-61737-960-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics