Skip to main content

Engineered Plant Minichromosomes

  • Protocol
  • First Online:
Plant Chromosome Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 701))

Abstract

The advent of transgenic technologies has met many challenges, both technical and political; however, these technologies are now widely applied, particularly for crop improvement. Bioengineering has resulted in plants carrying resistance to herbicides, insects, and viruses, as well as entire biosynthetic pathways. Some of the technical challenges in generating transgenic plant or animal materials include: an inability to control the location and nature of the integration of transgenic DNA into the host genome, and linkage of transformed genes to selectable antibiotic resistance genes used in the production of the transgene cassette. Furthermore, successive transformation of multiple genes may require the use of several selection genes. The coordinated expression of multiple stacked genes would be required for complex biosynthetic pathways or combined traits. Engineered nonintegrating minichromosomes can overcome many of these problems and hold much promise as key players in the next generation of transgenic technologies for improved crop plants. In this review, we discuss the history of artificial chromosome technology with an emphasis on engineered plant minichromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dasgupta, S., and Lobner-Olesen, A. (2004) Host controlled plasmid replication: Escherichia coli minichromosomes. Plasmid 52, 151–68.

    Article  PubMed  CAS  Google Scholar 

  2. Rush, M.G., and Misra, R. (1985) Extrachromosomal DNA in eukaryotes. Plasmid 14, 177–91.

    Article  PubMed  CAS  Google Scholar 

  3. Ryoji, M., Tominna, E., and Yasui, W. (1989) Minichromosome assembly accompanying repair-type DNA synthesis in Xenopus oocytes. Nucleic Acids Res 24, 10243–58.

    Article  Google Scholar 

  4. Bitgood, J.J., and Shoffner, R.N. (1990) Cytology and cytogenetics. In: Poultry breeding and genetics (Crawford, R.D., ed). Amsterdam: Elsevier, 401–27.

    Google Scholar 

  5. Gibson, S.I., Surosky, R.T., and Tye, B.-K. (1990) The phenotype of the minichromosome maintenance mutant mcm3 is characteristic of mutants defective in DNA replication. Mol Cell Biol 10, 5707–20.

    PubMed  CAS  Google Scholar 

  6. Weiden, M., Oshheim, Y.N., Beyer, A.L., and Van der Ploeg, L.H.T. (1991) Chromosome structure: DNA nucleotide sequence elements of a subset of the minichromosomes of the protozoan Trypanosoma brucei. Mol Cell Biol 11, 3823–34.

    PubMed  CAS  Google Scholar 

  7. Farr, C.J., Bayne, R.A.L., Kipling, D., Mills, W., Critcher, R., and Cooke, H.J. (1995) Generation of a human X-derived minichromosome using telomere-associated chromosome fragmentation. EMBO J 14, 5444–54.

    PubMed  CAS  Google Scholar 

  8. Yu, W., Lamb, J.C., Han, F., and Birchler, J.A. (2006) Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci USA 103, 17331–36.

    Article  PubMed  CAS  Google Scholar 

  9. Yu, W., Han, F., Gao, Z., Vega, J.M., and Birchler, J.A. (2007) Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci USA 104, 8924–29.

    Article  PubMed  CAS  Google Scholar 

  10. Jones, N., and Rees, H. (1982) Chromosomes. Academic Press, London.

    Google Scholar 

  11. Heller, R., Brown, K.E., Burgtorf, C., and Brown, W.R.A. (1996) Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage. Proc Natl Acad Sci USA 93, 7125–30.

    Article  PubMed  CAS  Google Scholar 

  12. Carlson, S.R., Rudgers, G.W., Zieler, H., Mach, J.M., Luo, S., Grunden, E., Krol, C., Copenhaver, G.P., and Preuss, D. (2007) Meiotic transmission of an in vitro-assembled autonomous maize minichromosome. PLOS Genet 3, e179. Doi:10.1371/journal.pgen.0030179.

    Article  Google Scholar 

  13. Duncan, A., and Gyula, H. (2007) Chromosomal engineering. Curr Opin Biotechnol 18, 420–24.

    Article  PubMed  CAS  Google Scholar 

  14. Houben, A., and Schubert, I. (2007) Engineered plant minichromosomes: a resurrection of B chromosomes. Plant Cell 19, 2323–27.

    Article  PubMed  CAS  Google Scholar 

  15. Murray, W.M., and Szostack, J.W. (1983) Construction of artificial chromosomes in yeast. Nature 305, 189–93.

    Article  PubMed  CAS  Google Scholar 

  16. Harrington, J.J., Van Bokkelen, G., Mays, R.W., Gustashaw, K., and Willard, H.F. (1997) Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet 15, 345–55.

    Article  PubMed  CAS  Google Scholar 

  17. Ikeno, M., Grimes, B., Okazaki, T., Nakano, M., Saitoh, K., Hoshino, H., McGill, N.I., Cooke, H., and Masumoto, H. (1998) Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol 16, 431–39.

    Article  PubMed  CAS  Google Scholar 

  18. Farr, C., Fantes, J., Goodfellow, P., and Cooke, H. (1991) Functional reintroduction of human telomeres into mammalian cells. Proc Natl Acad Sci USA 88, 7006–10.

    Article  PubMed  CAS  Google Scholar 

  19. Farr, C.J., Stevanovic, M., Thomson, E.J., Goodfellow, P.N., and Cooke, H.J. (1992) Telomere-associated chromosome fragmentation: applications in genome manipulation and analysis. Nat Genet 2, 275–82.

    Article  PubMed  CAS  Google Scholar 

  20. Burke, D.T., Carle, G.F., and Olson, M.V. (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806–12.

    Article  PubMed  CAS  Google Scholar 

  21. O’Connor, M., Peifer, M., and Bender, W. (1989) Construction of large DNA segments in Escherichia coli. Science 16, 1307–12.

    Article  Google Scholar 

  22. Hosoda, F., Nishimura, S., Uchida, H., and Ohki, M. (1990) An F factor based cloning system for large DNA fragments. Nucleic Acids Res 18, 3863–69.

    Article  PubMed  CAS  Google Scholar 

  23. Shizuya, H., Birren, B., Kim, U.J., Mancino, V., Slepak, T., Tachiiri, Y., and Simon, M. (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA 89, 8794–97.

    Article  PubMed  CAS  Google Scholar 

  24. Sternberg, N. (1990). Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc Natl Acad Sci USA 87, 103–7.

    Article  PubMed  CAS  Google Scholar 

  25. Ioannou, P.A., Amemiya, C.T., Garnes, J., Kroisel, P.M., Shizuya, H., Chen, C., Batzer, M.A., and de Jong, P.J. (1994). A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat Genet 6, 84–9.

    Article  PubMed  CAS  Google Scholar 

  26. Jakobovits, A., Moore, A.L., Green, L.L., Vergara, G.J., Maynard-Currie, C.E., Austin, H.A., and Klapholz, S. (1993) Germ-line transmission and expression of a human-derived yeast artificial chromosome. Nature 362(6417), 255–8.

    Article  PubMed  CAS  Google Scholar 

  27. Sun, T.-Q., Fenstermacher, D.A., and Vos, J.-M. (1994) Human artificial episomal chromosomes for cloning large DNA fragments in human cells. Nature 8, 33–41.

    CAS  Google Scholar 

  28. Itzhaki, J.E., Barnett, M.A., MacCarthy, A.B., Buckle, V.J., Brown, W.R.A., and Porter, A.C.G. (1992) Targetted breakage of a human chromosome mediated by cloned human telomeric DNA. Nat Genet 2, 283–7.

    Article  PubMed  CAS  Google Scholar 

  29. Basu, J., and Willard, H.F. (2005) Artificial and engineered chromosomes: non-integrating vectors for gene therapy. Trends Mol Med 11, 251–8.

    Article  PubMed  CAS  Google Scholar 

  30. Baird, D.M., and Farr, C.J. (2006) The organization and function of chromosomes. EMBO Rep 7, 372–6.

    PubMed  CAS  Google Scholar 

  31. Stinchcomb, D.T., Struhl, K., and Davis, R.W. (1979) Isolation and characterisation of a yeast chromosomal replicator. Nature 282, 39–43.

    Article  PubMed  CAS  Google Scholar 

  32. Marahrens, Y., and Stillman, B. (1992) A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255, 817–23.

    Article  PubMed  CAS  Google Scholar 

  33. Grimes, B., and Cooke, H. (1998) Engineering mammalian chromosomes. Hum Mol Genet 7, 1635–40.

    Article  PubMed  CAS  Google Scholar 

  34. Brock, R.D., and Pryor, A.J. (1996) An unstable minichromosome generates variegated oil yellow maize seedlings. Chromosoma 104, 575–84.

    Article  PubMed  CAS  Google Scholar 

  35. Zheng, Y.Z., Roseman, R.R., and Carlson, W.R. (1999) Time course study of the chromosome-type breakage-fusion-bridge cycle in maize. Genetics 153, 1435–44.

    PubMed  CAS  Google Scholar 

  36. McClintock, B. (1939) The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc Natl Acad Sci USA 25, 405–16.

    Article  PubMed  CAS  Google Scholar 

  37. McClintock, B. (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26, 234–82.

    PubMed  CAS  Google Scholar 

  38. Kato, A., Zheng, Y.Z., Auger, D.L., Phelps-Durr, T., Bauer, M.J., Lamb, J.C., and Birchler, J.A. (2005) Minichromosomes derived from the B chromosome of maize. Cytogenet Genome Res 109, 156–65.

    Article  PubMed  CAS  Google Scholar 

  39. Carlson, W.R. (1978) The B chromosome of corn. Annu Rev Genet 12, 5–23.

    Article  PubMed  CAS  Google Scholar 

  40. Jones, N.R., and Rees, H. (1982) B Chromosomes. Academic, London, 266 pp.

    Google Scholar 

  41. Jones, N., and Houben, A. (2003) B chromosomes in plants: escapees from the A chromosome genome? Trends Plant Sci 8, 417–23.

    Article  PubMed  CAS  Google Scholar 

  42. Albert, H., Dale, E.C., Lee, E., and Ow, D.W. (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7, 649–59.

    Article  PubMed  CAS  Google Scholar 

  43. Houben, A., Dawe, R.K., Jiang, J., and Schubert, I. (2008) Engineered plant minichromosomes: a bottom-up success? Plant Cell 20, 8–10.

    Article  PubMed  CAS  Google Scholar 

  44. Dawe, R.K. (1998) Meiotic chromosome organization and segregation in plants. Annu Rev Plant Physiol Plant Mol Biol 49, 371–95.

    Article  PubMed  CAS  Google Scholar 

  45. Phelps-Durr, T.L., and Birchler, J.A. (2004) An asymptotic determination of minimum centromere size for the maize B chromosome. Cytogenet Genome Res 106, 309–13.

    Article  PubMed  CAS  Google Scholar 

  46. Ananiev, E.V., Wu, C., Chamberlin, M.A., Svitashev, S., Schwartz, C., Gordon-Kamm, W., and Tingey, S. (2009) Artificial chromosome formation in maize (Zea mays L.). Chromosoma 118, 157–77.

    Article  PubMed  CAS  Google Scholar 

  47. Newell, C.A. (2000) Plant transformation technology: developments and applications. Mol Biotechnol 16, 53–65.

    Article  PubMed  CAS  Google Scholar 

  48. Srivastava, V., Anderson, O.D., and Ow, D.W. (1999) Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Natl Acad Sci USA 96, 11117–21.

    Article  PubMed  CAS  Google Scholar 

  49. Zhao, Z.Y., Gu, W., Cai, T., Tagliani, L.A., Hondred, D.A., Bond, D., Krell, S., Rudert, M.L., Bruce, W.B., and Pierce, D.A. (1998) Molecular analysis of T0 plants transformed by Agrobacterium and comparison of Agrobacterium-mediated transformation with bombardment transformation in maize. Maize Genet Coop Newsl 72, 34–37.

    Google Scholar 

  50. Dai, S., Zheng, P., Marmey, P., Zhang, S., Tian, W.Z., Chen, S.Y., Beachy, R.N., and Fau, C. (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7, 25–33.

    Article  CAS  Google Scholar 

  51. Shou, H., Frame, B.R., Whitham, S.A., and Wang, K. (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breed 13, 201–8.

    Article  CAS  Google Scholar 

  52. Cheng, M., Lowe, B.A., Spencer, M., Ye, X., and Armstrong, C.L. (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species In Vitro Cell Dev Biol Plant 40, 31–45.

    Article  Google Scholar 

  53. Kato, A., Albert, P.S., Vega, J.M., and Birchler, J.A. (2006) Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem 81, 71–8.

    Article  PubMed  Google Scholar 

  54. Kato, A., Vega, J.M., Han, F., Lamb, J.C., and Birchler, J.A. (2005) Advances in plant chromosome identification and cytogenetic techniques. Curr Opin Plant Biol 8, 148–54.

    Article  PubMed  CAS  Google Scholar 

  55. Heacock, M., Spangler, E., Riha, K., Puizina, J., and Shippen, D.E. (2004) Molecular analysis of telomere fusions in Arabidopsis: multiple pathways for chromosome end-joining. EMBO J 23, 2304–13.

    Article  PubMed  CAS  Google Scholar 

  56. Halpin, C. (2005) Gene stacking in transgenic plants-the challenge for 21st century plant biotechnology. Plant Biotechnol J 3, 141–55.

    Article  PubMed  CAS  Google Scholar 

  57. Gleba, Y., Klimyuk, V., and Marillonnet, S. (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18, 134–41.

    Article  PubMed  CAS  Google Scholar 

  58. Maliga, P. (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55, 289–313.

    Article  PubMed  CAS  Google Scholar 

  59. Bock, R. (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18, 100–6.

    Article  PubMed  CAS  Google Scholar 

  60. Murata, M., Shibata, F., and Yokota, E. (2006) The origin, meiotic behavior, and transmission of a novel minichromosome in Arabidopsis thaliana. Chromosoma 115, 311–19.

    Article  PubMed  Google Scholar 

  61. Carlson, W.R. (1970) Nondisjunction and isochromosome formation in the B chromosome of maize. Chromosoma 30, 356–65.

    Article  Google Scholar 

  62. Ricci, G.L., Silva, N., Pagliarini, M.S., and Scapim, C.A. (2007) B chromosomes in popcorn (Zea mays L.). Genet Mol Res 6, 137–43.

    PubMed  CAS  Google Scholar 

  63. Birchler, J.A., Yu, W., and Han, F. (2008). Plant engineered minichromosomes and artificial chromosome platforms. Cytogenet Genome Res 120, 228–32.

    Article  PubMed  CAS  Google Scholar 

  64. Yu, W., Han, F., and Birchler, J.A. (2007) Engineered minichromosomes in plants. Curr Opin Biotechnol 18, 425–31.

    Article  PubMed  CAS  Google Scholar 

  65. Ow, D.W. (2007) GM maize from site-specific recombination technology, what next? Curr Opin Biotechnol 18, 115–20.

    Article  PubMed  CAS  Google Scholar 

  66. Puchta, H. (2002) Gene replacement by homologous recombination in plants. Plant Mol Biol 48, 173–82.

    Article  PubMed  CAS  Google Scholar 

  67. Reiss, B. (2003) Homologous recombination and gene targeting in plant cells. Int Rev Cytol 228, 85–139.

    Article  PubMed  CAS  Google Scholar 

  68. Pacher, M., Schmidt-Puchta, W., and Puchta, H. (2007) Two unlinked double-strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and nonhomologous end joining. Genetics 175, 21–9.

    Article  PubMed  CAS  Google Scholar 

  69. Wright, D.A., Townsend, J.A., Winfrey, R.J., Irwin, P.A., Rajagopal, J., Lonosky, P.M., Hall, B.D., Jondle, M.D., and Voytas, D.F. (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44, 693–705.

    Article  PubMed  CAS  Google Scholar 

  70. Townsend, J.A., Wright, D.A., Winfrey, R.J., Fu, F., Maeder, M.L., Joung, J.K., and Voytas, D.F. (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459, 442–5.

    Article  PubMed  CAS  Google Scholar 

  71. Shukla, V.K., Doyon, Y, Miller, J.C., DeKelver, R.C., Moehle, E.A., Worden, S.E., Mitchell, J.C., Arnold, N.L., Gopalan, S., Meng, X., Choi, V.M., Rock, J.M., Wu, Y.Y., Katibah, G.E., Zhifang, G., McCaskill, D., Simpson, M.A., Blakeslee, B., Greenwalt, S.A., Butler, H.J., Hinkley, S.J., Zhang, L., Rebar, E.J., Gregory, P.D., and Urnov, F.D. (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459, 437–41.

    Article  PubMed  CAS  Google Scholar 

  72. Hoa, T.T.C., Bong, B.B., Huq, E., and Hodges, T.K. (2002) Cre/lox site-specific recombination controls the excision of a transgene from the rice genome. Theor Appl Genet 104, 518–25.

    Article  PubMed  CAS  Google Scholar 

  73. Li, Z., Xing, A., Moon, B.P., Burgoyne, S.A., Guida, A.D., Liang, H., Lee, C., Caster, C.S., Barton, J.E., Klein, T.M., and Falco, S.C. (2007) A Cre/loxP-mediated self-activating gene excision system to produce marker gene free transgenic soybean plants. Plant Mol Biol 65, 329–41.

    Article  PubMed  CAS  Google Scholar 

  74. Vergunst, A.C., Jansen, L.E., Fransz, P.F., de Jong, J.H., and Hooykaas, P.J. (2000) Cre/lox-mediated recombination in Arabidopsis: evidence for transmission of a translocation and a deletion event. Chromosoma 4, 287–97.

    Article  Google Scholar 

  75. Srivastava, V., Ariza-Nieto, M., and Wilson, A.J. (2004) Cre-mediated site-specific gene integration for consistent transgene expression in rice. Plant Biotechnol J 2, 169–79.

    Article  PubMed  CAS  Google Scholar 

  76. Srivastava, V., and Ow, D. (2001) Single-copy primary transformants of maize obtained through co-introduction of recombinase-expressing construct. Plant Mol Biol 46, 561–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research supported by National Science Foundation grant DBI 0701297 to James Birchler.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gaeta, R.T., Krishnaswamy, L. (2011). Engineered Plant Minichromosomes. In: Birchler, J. (eds) Plant Chromosome Engineering. Methods in Molecular Biology, vol 701. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-957-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-957-4_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-956-7

  • Online ISBN: 978-1-61737-957-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics