Skip to main content

Engineering the Plastid Genome of Nicotiana sylvestris, a Diploid Model Species for Plastid Genetics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 701))

Abstract

The plastids of higher plants have their own ∼120–160-kb genome that is present in 1,000–10,000 copies per cell. Engineering of the plastid genome (ptDNA) is based on homologous recombination between the plastid genome and cloned ptDNA sequences in the vector. A uniform population of engineered ptDNA is obtained by selection for marker genes encoded in the vectors. Manipulations of ptDNA include (1) insertion of transgenes in intergenic regions; (2) posttransformation excision of marker genes to obtain marker-free plants; (3) gene knockouts and gene knockdowns, and (4) cotransformation with multiple plasmids to introduce nonselected genes without physical linkage to marker genes. Most experiments on plastome engineering have been carried out in the allotetraploid Nicotiana tabacum. We report here for the first time plastid transformation in Nicotiana sylvestris, a diploid ornamental species. We demonstrate that the protocols and vectors developed for plastid transformation in N. tabacum are directly applicable to N. sylvestris with the advantage that the N. sylvestris transplastomic lines are suitable for mutant screens.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zoschke, R., Liere, K., and Borner, T. (2007) From cotyledon to mature plant: Arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development, Plant J 50, 710–722.

    Article  PubMed  CAS  Google Scholar 

  2. Shaver, J. M., Oldenburg, D. J., and Bendich, A. J. (2006) Changes in chloroplast DNA during development in tobacco, Medicago truncatula, pea, and maize, Planta 224, 72–82.

    Article  PubMed  CAS  Google Scholar 

  3. Boynton, J. E., Gillham, N. W., Harris, E. H., Hosler, J. P., Johnson, A. M., Jones, A. R., Randolph-Anderson, B. L., Robertson, D., Klein, T. M., Shark, K. B., and Sanford, J. C. (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles, Science 240, 1534–1538.

    Article  PubMed  CAS  Google Scholar 

  4. Svab, Z., Hajdukiewicz, P., and Maliga, P. (1990) Stable transformation of plastids in higher plants, Proc Natl Acad Sci USA 87, 8526–8530.

    Article  PubMed  CAS  Google Scholar 

  5. Lapidot, M., Raveh, D., Sivan, A., Arad, S. M., and Shapira, M. (2002) Stable chloroplast transformation of the unicellular red alga Porphyridium species, Plant Physiol 129, 7–12.

    Article  PubMed  CAS  Google Scholar 

  6. Sugiura, C., and Sugita, M. (2004) Plastid transformation reveals that moss trnR-CCG is not essential for plastid function, Plant J 40, 31–321.

    Article  PubMed  CAS  Google Scholar 

  7. Chiyoda, S., Linley, P. J., Yamato, K. T., Fukuzawa, H., Yokota, A., and Kohchi, T. (2007) Simple and efficient plastid transformation system for the liverwort Marchantia polymorpha L. suspension-culture cells, Transgenic Res 16, 41–49.

    Article  PubMed  CAS  Google Scholar 

  8. Svab, Z., and Maliga, P. (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene, Proc Natl Acad Sci USA 90, 913–917.

    Article  PubMed  CAS  Google Scholar 

  9. Ruf, S., Hermann, M., Berger, I. J., Carrer, H., and Bock, R. (2001) Stable genetic transformation of tomato plastids: foreign protein expression in fruit, Nat Biotechnol 19, 870–875.

    Article  PubMed  CAS  Google Scholar 

  10. Dufourmantel, N., Pelissier, B., Garcon, F., Peltier, G., Ferullo, J. M., and Tissot, G. (2004) Generation of fertile transplastomic soybean, Plant Mol Biol 55, 479–489.

    Article  PubMed  CAS  Google Scholar 

  11. Lelivelt, C., McCabe, M., Newell, C., de Snoo, B., Van Dunn, K., Birch-Machin, I., Gray, J. C., Mills, K., and Nugent, J. M. (2005) Plastid transformation in lettuce (Lactuca sativa L), Plant Mol Biol 58, 763–774.

    Article  PubMed  CAS  Google Scholar 

  12. Kanamoto, H., Yamashita, A., Asao, H., Okumura, S., Takase, H., Hattori, M., Yokota, A., and Tomizawa, K. (2006) Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids, Transgenic Res 15, 205–217.

    Article  PubMed  CAS  Google Scholar 

  13. Liu, C. W., Lin, C. C., Chen, J. J., and Tseng, M. J. (2007) Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment, Plant Cell Rep 26, 1733–1744.

    Article  PubMed  CAS  Google Scholar 

  14. Lutz, K. A., Azhagiri, A. K., Tungsuchat-Huang, T., and Maliga, P. (2007) A guide to choosing vectors for transformation of the plastid genome of higher plants, Plant Physiol 145, 1201–1210.

    Article  PubMed  CAS  Google Scholar 

  15. Sinagawa-Garcia, S. R., Tungsuchat-Huang, T., Paredes-Lopez, O., and Maliga, P. (2009) Next generation synthetic vectors for transformation of the plastid genome of higher plants, Plant Mol Biol 70, 487–498.

    Article  PubMed  CAS  Google Scholar 

  16. Zhou, F., Karcher, D., and Bock, R. (2007) Identification of a plastid intercistronic expression element (IEE) facilitating the expression of translatable monocistronic mRNAs from operons, Plant J 52, 961–972.

    Article  PubMed  CAS  Google Scholar 

  17. Golds, T., Maliga, P., and Koop, H. U. (1993) Stable plastid transformation in PEG-treated protoplasts of Nicotiana tabacum, Biotechnology 11, 95–97.

    Article  CAS  Google Scholar 

  18. O’Neill, C., Horvath, G. V., Horvath, E., Dix, P. J., and Medgyesy, P. (1993) Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems, Plant J 3, 729–738.

    Article  PubMed  Google Scholar 

  19. Carrer, H., Hockenberry, T. N., Svab, Z., and Maliga, P. (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco, Mol Gen Genet 241, 49–56.

    Article  PubMed  CAS  Google Scholar 

  20. Huang, F. C., Klaus, S. M. J., Herz, S., Zuo, Z., Koop, H. U., and Golds, T. J. (2002) Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection, Mol Genet Genomics 268, 19–27.

    Article  PubMed  CAS  Google Scholar 

  21. Lutz, K., Corneille, S., Azhagiri, A. K., Svab, Z., and Maliga, P. (2004) A novel approach to plastid transformation utilizes the phiC31 phage integrase, Plant J 37, 906–913.

    Article  PubMed  CAS  Google Scholar 

  22. Barone, P., Zhang, X. H., and Widholm, J. M. (2009) Tobacco plastid transformation using the feedback-insensitive anthranilate synthase [alpha]-subunit of tobacco (ASA2) as a new selectable marker, J Exp Bot 60, 3195–3202.

    Article  PubMed  CAS  Google Scholar 

  23. Langbecker, C. L., Ye, G. N., Broyles, D. L., Duggan, L. L., Xu, C. W., Hajdukiewicz, P. T., Armstrong, C. L., and Staub, J. M. (2004) High-frequency transformation of undeveloped plastids in tobacco suspension cells, Plant Physiol 135, 39–46.

    Article  PubMed  CAS  Google Scholar 

  24. Bock, R., Kössel, H., and Maliga, P. (1994) Introduction of a heterologous editing site into the tobacco plastid genome: the lack of RNA editing leads to a mutant phenotype, EMBO J 13, 4623–4628.

    PubMed  CAS  Google Scholar 

  25. Whitney, S. M., and Andrews, T. J. (2001) Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) supports photosynthesis and growth of tobacco, Proc Natl Acad Sci USA 98, 14738–14743.

    Article  PubMed  CAS  Google Scholar 

  26. Sharwood, R. E., von Caemmerer, S., Maliga, P., and Whitney, S. M. (2008) The catalytic properties of hybrid rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent source Rubiscos and can support tobacco growth, Plant Physiol 146, 83–96.

    Article  PubMed  CAS  Google Scholar 

  27. Kanevski, I., and Maliga, P. (1994) Relocation of the plastid rbcL gene to the nucleus yields functional ribulose-1,5-bisphosphate carboxylase in tobacco chloroplasts, Proc Natl Acad Sci USA 91, 1969–1973.

    Article  PubMed  CAS  Google Scholar 

  28. Allison, L. A., Simon, L. D., and Maliga, P. (1996) Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants, EMBO J 15, 2802–2809.

    PubMed  CAS  Google Scholar 

  29. Maliga, P. (2004) Plastid transformation in higher plants, Ann Rev Plant Biol 55, 289–313.

    Article  CAS  Google Scholar 

  30. Carrer, H., and Maliga, P. (1995) Targeted insertion of foreign genes into the tobacco plastid genome without physical linkage to the selectable marker gene, Biotechnology 13, 791–794.

    Article  CAS  Google Scholar 

  31. Rumeau, D., Becuwe-Linka, N., Beyly, A., Carrier, P., Cuine, S., Genty, B., Medgyesy, P., Horvath, E., and Peltier, G. (2004) Increased zinc content in transplastomic tobacco plants expressing a polyhistidine-tagged Rubisco large subunit, Plant Biotechnol J 2, 389–399.

    Article  PubMed  CAS  Google Scholar 

  32. Ye, G. N., Colburn, S., Xu, C. W., Hajdukiewicz, P. T. J., and Staub, J. M. (2003) Persistance of unselected transgenic DNA during a plastid transformation and segregation approach to herbicide resistance, Plant Physiol 133, 402–410.

    Article  PubMed  CAS  Google Scholar 

  33. Lutz, K. A., and Maliga, P. (2007) Construction of marker-free transplastomic plants, Curr Opin Biotechnol 18, 107–114.

    Article  PubMed  CAS  Google Scholar 

  34. Bock, R. (2001) Transgenic plastids in basic research and plant biotechnology, J Mol Biol 312, 425–438.

    Article  PubMed  CAS  Google Scholar 

  35. Bock, R. (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming, Curr Opin Biotechnol 18, 100–106.

    Article  PubMed  CAS  Google Scholar 

  36. Daniell, H., Chebolu, S., Kumar, S., Singleton, M., and Falconer, R. (2005) Chloroplast-derived vaccine antigens and other therapeutic proteins, Vaccine 23, 1779–1783.

    Article  PubMed  CAS  Google Scholar 

  37. Bock, R., and Warzecha, H. (2010) Solar-powered factories for new vaccines and antibiotics, Trends Biotechnol 28(5), 246–252.

    Article  PubMed  CAS  Google Scholar 

  38. Leitch, I. J., Hanson, L., Lim, K. Y., Kovarik, A., Chase, M. W., Clarkson, J. J., and Leitch, A. R. (2008) The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae), Ann Bot 101, 805–814.

    Article  PubMed  CAS  Google Scholar 

  39. Yukawa, M., Tsudzuki, T., and Sugiura, M. (2006) The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum, Mol Genet Genomics 275, 367–373.

    Article  PubMed  CAS  Google Scholar 

  40. Khan, M. S., and Maliga, P. (1999) Fluorescent antibiotic resistance marker to track plastid transformation in higher plants, Nat Biotechnol 17, 910–915.

    Article  PubMed  CAS  Google Scholar 

  41. Kittiwongwattana, C., Lutz, K. A., Clark, M., and Maliga, P. (2007) Plastid marker gene excision by the phiC31 phage site-specific recombinase, Plant Mol Biol 64, 137–143.

    Article  PubMed  CAS  Google Scholar 

  42. Lutz, K. A., Svab, Z., and Maliga, P. (2006) Construction of marker-free transplastomic tobacco using the Cre-loxP site-specific recombination system, Nat Protocols 1, 900–910.

    Article  CAS  Google Scholar 

  43. Lutz, K. A., and Maliga, P. (2007) Transformation of the plastid genome to study RNA editing, Methods Enzymol 424, 501–518.

    Article  PubMed  CAS  Google Scholar 

  44. Galun, E., Arze-Gonen, P., Fluhr, R., Edelman, M., and Aviv, D. (1982) Cytoplasmic hybridization in Nicotiana: mitochondrial DNA analysis in progenies resulting from fusion between protoplasts having different organelle constitutions, Mol Gen Gent 186, 50–56.

    Article  CAS  Google Scholar 

  45. Murashige, T., and Skoog, F. (1962) A revised medium for the growth and bioassay with tobacco tissue culture, Physiol Plant 15, 473–497.

    Article  CAS  Google Scholar 

  46. Sidorov, V., Menczel, L., and Maliga, P. (1981) Isoleucine-requiring Nicotiana plant deficient in threonine deaminase, Nature 294, 87–88.

    Article  CAS  Google Scholar 

  47. Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants, EMBO J 6, 3901–3907.

    PubMed  CAS  Google Scholar 

  48. Gallagher, S. R., (Ed.) (1992) GUS protocols: using the GUS gene as a reporter of gene expression, Academic Press, San Diego.

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the USDA Biotechnology Risk Assessment Research Grant Program Award No. 2005-33120-16524 and 2008-03012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pal Maliga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Maliga, P., Svab, Z. (2011). Engineering the Plastid Genome of Nicotiana sylvestris, a Diploid Model Species for Plastid Genetics. In: Birchler, J. (eds) Plant Chromosome Engineering. Methods in Molecular Biology, vol 701. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-957-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-957-4_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-956-7

  • Online ISBN: 978-1-61737-957-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics