Skip to main content

Enhancer Trapping in Plants

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 701))

Abstract

Advances in sequencing technology have led to the availability of complete genome sequences of many different plant species. In order to make sense of this deluge of information, functional genomics efforts have been intensified on many fronts. With improvements in plant transformation technologies, T-DNA and/or transposon-based gene and enhancer-tagged populations in various crop species are being developed to augment functional annotation of genes and also to help clone important genes. State-of-the-art cloning and sequencing technologies, which would help identify T-DNA or transposon junction sequences in large genomes, have also been initiated. This chapter gives a brief history of enhancer trapping and then proceeds to describe gene and enhancer tagging in plants. The significance of reporter gene fusion populations in plant genomics, especially in important cereal crops, is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bulger, M. and Groudine, M. (2002) TRAPping enhancer function. Nat Genet. 32, 555–6.

    Article  PubMed  CAS  Google Scholar 

  2. Carter, D., Chakalova, L., Osborne, C.S., Dai, Y.F. and Fraser, P. (2002) Long-range chromatin regulatory interactions in vivo. Nat Genet. 32, 623–6.

    Article  PubMed  CAS  Google Scholar 

  3. Dekker, J., Rippe, K., Dekker, M. and Kleckner, N. (2002) Capturing chromosome conformation. Science. 295, 1306–11.

    Article  PubMed  CAS  Google Scholar 

  4. Zhao, Z., Tavoosidana, G., Sjölinder, M., Göndör, A., Mariano, P., Wang, S., Kanduri, C., Lezcano, M., Sandhu, K.S., Singh, U., Pant, V., Tiwari, V., Kurukuti, S. and Ohlsson, R. (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet. 38, 1341–7.

    Article  PubMed  CAS  Google Scholar 

  5. Dostie, J., Richmond, T.A., Arnaout, R.A., Selzer, R.R., Lee, W.L., Honan, T.A., Rubio, E.D., Krumm, A., Lamb, J., Nusbaum, C., Green, R.D. and Dekker, J. (2006) Chromosome conformation capture carbon copy (5C): a massively parallel ­solution for mapping interactions between genomic elements. Genome Res. 16, 1299–309.

    Article  PubMed  CAS  Google Scholar 

  6. Vassetzky, Y., Gavrilov, A., Eivazova, E., Priozhkova, I., Lipinski, M. and Razin, S. (2009) Chromosome conformation capture (from 3C to 5C) and its ChIP-based modification. Methods Mol Biol. 567, 171–88.

    Article  PubMed  Google Scholar 

  7. Bellen, H.J. (1999) Ten years of enhancer detection: lessons from the fly. Plant Cell. 11, 2271–81.

    PubMed  CAS  Google Scholar 

  8. Casadaban, M.J. and Cohen, S.N. (1979) Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A. 76, 4530–3.

    Article  PubMed  CAS  Google Scholar 

  9. O’Kane, C., Stephens, M.A. and McConnell, D. (1986) Integrable alpha-­amylase plasmid for generating random transcriptional fusions in Bacillus subtilis. J Bacteriol. 168, 973–81.

    PubMed  Google Scholar 

  10. O’Kane, C.J. and Gehring, W.J. (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci U S A. 84, 9123–7.

    Article  PubMed  Google Scholar 

  11. Arabidopsis Genome Initiative. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 408, 796–815.

    Article  Google Scholar 

  12. Yu, J. Hu, S., Wang, J., et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science. 296, 79–92.

    Article  PubMed  CAS  Google Scholar 

  13. Goff, S.A., Ricke, D., Lan, T.H., et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science. 296, 92–100.

    Article  PubMed  CAS  Google Scholar 

  14. Lister, R., O’Malley, R.C., Tonti-Filippini, J., Gregory, B.D., Berry, C.C., Millar, A.H. and Ecker, J.R. (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell. 133, 523–36.

    Article  PubMed  CAS  Google Scholar 

  15. Yamamoto, T., Yonemaru, J. and Yano, M. (2009) Towards the understanding of complex traits in rice: substantially or superficially? DNA Res. 16, 141–54.

    Article  PubMed  CAS  Google Scholar 

  16. Adams, K.L. (2007) Evolution of duplicate gene expression in polyploid and hybrid plants. J Hered. 98, 136–41.

    Article  PubMed  CAS  Google Scholar 

  17. Blanc, G. and Wolfe, K.H. (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell. 16, 1667–78.

    Article  PubMed  CAS  Google Scholar 

  18. Freeling, M. and Subramaniam, S. (2009) Conserved noncoding sequences (CNSs) in higher plants. Curr Opin Plant Biol. 12, 126–32.

    Article  PubMed  CAS  Google Scholar 

  19. Koncz, C., Mayerhofer, R., Koncz-Kalman, Z., Nawrath, C., Reiss, B., Redei, G.P. and Schell, J. (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J. 9, 1337–46.

    PubMed  CAS  Google Scholar 

  20. Brenner, S., Johnson, M., Bridgham. J., Golda, G., Lloyd, D.H., Johnson, D., Luo, S., McCurdy, S., Foy, M., Ewan, M., Roth, R., George, D., Eletr, S., Albrecht, G., Vermaas, E., Williams, S.R., Moon, K., Burcham, T., Pallas, M., DuBridge, R.B., Kirchner, J., Fearon, K., Mao, J. and Corcoran, K. (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol. 18, 630–4.

    Article  PubMed  CAS  Google Scholar 

  21. Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 10, 57–63.

    Article  PubMed  CAS  Google Scholar 

  22. Springer, P.S. (2000) Gene traps: tools for plant development and genomics. Plant Cell. 12, 1007–20.

    PubMed  CAS  Google Scholar 

  23. Koncz, C., Martini, N., Mayerhofer, R., Koncz-Kalman, Z., Körber, H., Redei, G.P. and Schell J. (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci U S A. 86, 8467–71.

    Article  PubMed  CAS  Google Scholar 

  24. Kertbundit, S., De Greve, H., Deboeck, F., Van Montagu, M. and Hernalsteens, J.P. (1991) In vivo random beta-glucuronidase gene fusions in Arabidopsis thaliana. Proc Natl AcadSci U S A. 88, 5212–6.

    Article  PubMed  CAS  Google Scholar 

  25. Fobert, P.R., Miki, B.L. and Iyer, V.N. (1991) Detection of gene regulatory signals in plants revealed by T-DNA-mediated fusions. Plant Mol Biol. 17, 837–51.

    Article  PubMed  CAS  Google Scholar 

  26. Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–7.

    PubMed  CAS  Google Scholar 

  27. Feldmann, K.A. and Marks, M.D. (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet. 208, 1–9.

    Article  CAS  Google Scholar 

  28. Azpiroz-Leehan, R. and Feldmann, K.A. (1997) T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet. 13, 152–6.

    Article  PubMed  CAS  Google Scholar 

  29. Bechtold, N., Ellis, J. and Pelletier, G. (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris Life Sci. 316, 1194–9.

    CAS  Google Scholar 

  30. Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–43.

    Article  PubMed  CAS  Google Scholar 

  31. Lindsey, K., Wei, W., Clarke, M.C., McArdle, H.F., Rooke, L.M. and Topping J.F. (1993) Tagging genomic sequences that direct transgene expression by activation of a promoter trap in plants. Transgenic Res. 2, 33–47.

    Article  PubMed  CAS  Google Scholar 

  32. Topping, J.F., Agyeman, F., Henricot, B. and Lindsey, K. (1994) Identification of molecular markers of embryogenesis in Arabidopsis thaliana by promoter trapping. Plant J. 5, 895–903.

    Article  PubMed  CAS  Google Scholar 

  33. Topping, J.F. and Lindsey, K. (1997) Promoter trap markers differentiate structural and positional components of polar development in Arabidopsis. Plant Cell. 9, 1713–25.

    PubMed  CAS  Google Scholar 

  34. De Buck, S., Jacobs, A., Van Montagu, M. and Depicker, A. (1999) The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J. 20, 295–304.

    Article  PubMed  Google Scholar 

  35. McClintock, B. (1948) Mutable loci in maize. Carnegie Inst Wash Yearb. 47, 155–69.

    Google Scholar 

  36. Fedoroff, N., Wessler, S. and Shure, M. (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell. 35, 235–42.

    Article  PubMed  CAS  Google Scholar 

  37. Schwarz-Sommer, Z., Gierl, A., Klösgen, R.B., Wienand, U., Peterson, P.A. and Saedler, H. (1984) The Spm (En) transposable element controls the excision of a 2-kb DNA insert at the wx allele of Zea mays. EMBO J. 3, 1021–8.

    PubMed  CAS  Google Scholar 

  38. Strommer, J.N., Hake, S., Bennetzen, J., Taylor, W.C. and Freeling, M. (1982) Regulatory mutants of the maize Adhl gene caused by DNA insertions. Nature 300, 542–4.

    Article  CAS  Google Scholar 

  39. Hehl, R. and Baker, B. (1990) Properties of the maize transposable element activator in transgenic tobacco plants: a versatile inter-species genetic tool. Plant Cell. 2, 709–21.

    PubMed  CAS  Google Scholar 

  40. Osborne, B.I., Corr, C.A., Prince, J.P., Hehl, R., Tanksley, S.D., McCormick, S. and Baker, B. (1991) Ac transposition from a T-DNA can generate linked and unlinked clusters of insertions in the tomato genome. Genetics. 129, 833–44.

    PubMed  CAS  Google Scholar 

  41. Wessler, S.R. (2006). Eukaryotic transposable elements: teaching old genomes new tricks. In The Implicit Genome (Caporale L, ed.). Oxford University Press, USA.

    Google Scholar 

  42. Sundaresan, V., Springer, P., Volpe, T., Haward, S., Jones, J.D., Dean, C., Ma, H. and Martienssen, R. (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 9, 1797–810.

    Article  PubMed  CAS  Google Scholar 

  43. Kumar, C.S., Wing, R.A. and Sundaresan, V. (2005) Efficient insertional mutagenesis in rice using the maize En/Spm elements. Plant J. 44, 879–92.

    Article  PubMed  CAS  Google Scholar 

  44. Kolesnik, T., Szeverenyi, I., Bachmann, D., Kumar, C.S., Jiang, S., Ramamoorthy, R., Cai, M., Ma, Z.G., Sundaresan, V. and Ramachandran, S. (2004) Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J. 37, 301–14.

    Article  PubMed  CAS  Google Scholar 

  45. Haseloff, J., Siemering, K.R., Prasher, D.C. and Hodge, S. (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci U S A. 94, 2122–7.

    Article  PubMed  CAS  Google Scholar 

  46. Venken, K.J. and Bellen, H.J. (2007) Transgenesis upgrades for Drosophila melanogaster. Development. 134, 3571–84.

    Article  PubMed  CAS  Google Scholar 

  47. Benfey, P.N., Ren, L. and Chua, N.H. (1990) Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J. 9, 1677–84.

    PubMed  CAS  Google Scholar 

  48. Laplaze, L., Parizot, B., Baker, A., Ricaud, L., Martinière, A., Auguy, F., Franche, C., Nussaume, L., Bogusz, D. and Haseloff J. (2005) GAL4-GFP enhancer trap lines for genetic manipulation of lateral root ­development in Arabidopsis thaliana. J Exp Bot. 56, 2433–42.

    Article  PubMed  CAS  Google Scholar 

  49. Gardner, M.J., Baker, A.J., Assie, J.M., Poethig, R.S., Haseloff, J.P. and Webb, A.A. (2009) GAL4 GFP enhancer trap lines for analysis of stomatal guard cell development and gene expression. J Exp Bot. 60, 213–26.

    Article  PubMed  CAS  Google Scholar 

  50. Acosta-García, G., Autran, D. and Vielle-Calzada, J.P. (2004) Enhancer detection and gene trapping as tools for functional genomics in plants. Methods Mol Biol. 267, 397–414.

    PubMed  Google Scholar 

  51. Engineer, C.B., Fitzsimmons, K.C., Schmuke, J.J., Dotson, S.B. and Kranz, R.G. (2005) Development and evaluation of a Gal4-mediated LUC/GFP/GUS enhancer trap system in Arabidopsis. BMC Plant Biol. 5, 9.

    Article  PubMed  Google Scholar 

  52. Santos, E., Remy, S., Thiry, E., Windelinckx, S., Swennen, R. and Sági L. (2009) Characterization and isolation of a T-DNA tagged banana promoter active during in vitro culture and low temperature stress. BMC Plant Biol. 9, 77.

    Article  PubMed  Google Scholar 

  53. Goff, S.A. (1999) Rice as a model for cereal genomics. Curr Opin Plant Biol. 2, 86–9.

    Article  PubMed  CAS  Google Scholar 

  54. International Rice Genome Sequencing Project. (2005) The map-based sequence of the rice genome. Nature. 436, 793–800.

    Article  Google Scholar 

  55. Datta, K. and Datta S.K. (2006) Indica rice (Oryza sativa, BR29 and IR64). Methods Mol Biol. 343, 201–12.

    PubMed  Google Scholar 

  56. An, G., Lee, S., Kim, S.H. and Kim, S.R. (2005) Molecular genetics using T-DNA in rice. Plant Cell Physiol. 46(1), 14–22.

    Article  PubMed  CAS  Google Scholar 

  57. Sallaud, C., Gay, C., Larmande, P., Bès, M., Piffanelli, P., Piégu, B., Droc, G., Regad, F., Bourgeois, E., Meynard, D., Périn, C., Sabau, X., Ghesquière, A., Glaszmann, J.C., Delseny, M. and Guiderdoni, E. (2004) High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J. 39, 450–64.

    Article  PubMed  CAS  Google Scholar 

  58. Johnson, A.A., Hibberd, J.M., Gay, C., Essah, P.A., Haseloff, J., Tester, M. and Guiderdoni, E. (2005) Spatial control of transgene expression in rice (Oryza sativa L.) using the GAL4 enhancer trapping system. Plant J. 41, 779–89.

    Article  PubMed  CAS  Google Scholar 

  59. Larmande, P., Gay, C., Lorieux, M., Périn, C., Bouniol, M., Droc, G., Sallaud, C., Perez, P., Barnola, I., Biderre-Petit, C., Martin, J., Morel, J.B., Johnson, A.A., Bourgis, F., Ghesquière, A., Ruiz, M., Courtois, B. and Guiderdoni, E. (2008) Oryza Tag Line, a phenotypic mutant database for the Genoplante rice insertion line library. Nucleic Acids Res. 36(Database issue), D1022–7.

    PubMed  CAS  Google Scholar 

  60. Wu, C., Li, X., Yuan, W., Chen, G., Kilian, A., Li, J., Xu, C., Li, X., Zhou, D.X., Wang, S. and Zhang, Q. (2003) Development of enhancer trap lines for functional analysis of the rice genome. Plant J. 35, 418–27.

    Article  PubMed  CAS  Google Scholar 

  61. Candela, H. and Hake, S. (2008) The art and design of genetic screens: maize. Nat Rev Genet. 9, 192–203.

    PubMed  CAS  Google Scholar 

  62. McClintock, B. (1954) Mutations in maize and chromosomal observations in Neurospora. Carnegie Inst Wash Yearb. 53, 254–60.

    Google Scholar 

  63. Peterson, P.A. (1953) A mutable pale green locus in maize. Genetics. 38, 682–3.

    Google Scholar 

  64. Robertson, D.S. (1978) Characterization of a mutator system in maize. Mutat Res. 51, 21–8.

    Article  Google Scholar 

  65. McCarty, D.R., Settles, A.M., Suzuki, M., Tan, B.C., Latshaw, S., Porch, T., Robin, K., Baier, J., Avigne, W., Lai, J., Messing, J., Koch, K.E. and Hannah, L.C. (2005) Steady-state transposons mutagenesis in inbred maize. Plant J. 44, 52–61.

    Article  PubMed  CAS  Google Scholar 

  66. Ahern, K.R., Deewatthanawong, P., Schares, J., Muszynski, M., Weeks, R., Vollbrecht, E., Duvick, J., Brendel, V.P. and Brutnell, T.P. (2009) Regional mutagenesis using dissociation in maize. Methods. 49(3), 248–54.

    Article  PubMed  CAS  Google Scholar 

  67. Conrad, L.J. and Brutnell, T.P. (2005) Ac-immobilized, a stable source of activator transposase that mediates sporophytic and gametophytic excision of dissociation elements in maize. Genetics. 171, 1999–2012.

    Article  PubMed  CAS  Google Scholar 

  68. Vollbrecht, E., Springer, P.S., Goh, L., Buckler, E.S., 4th and Martienssen, R. (2005) Architecture of floral branch systems in maize and related grasses. Nature. 436, 1119–26.

    Article  PubMed  CAS  Google Scholar 

  69. Schmidt, R.J., Burr, F.A. and Burr, B. (1987) Transposon tagging and molecular analysis of the maize regulatory locus opaque-2. Science. 238, 960–3.

    Article  PubMed  CAS  Google Scholar 

  70. Frame, B.R., Shou, H., Chikwamba, R.K., Zhang, Z., Xiang, C., Fonger, T.M., Pegg, S.E., Li, B., Nettleton, D.S., Pei, D. and Wang K. (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 129, 13–22.

    Article  PubMed  CAS  Google Scholar 

  71. Veg, J.M., Yu, W., Han, F., Kato, A., Peters, E.M., Zhang, Z.J. and Birchler, J.A. (2008) Agrobacterium-mediated transformation of maize (Zea mays) with Cre-lox site specific recombination cassettes in BIBAC vectors. Plant Mol Biol. 66, 587–98.

    Article  Google Scholar 

  72. Kato, A., Lamb, J.C. and Birchler, J.A. (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci U S A. 101, 13554–9.

    Article  PubMed  CAS  Google Scholar 

  73. Xiao, Y.L. and Peterson, T. (2002). Ac transposition is impaired by a small terminal deletion. Mol Genet Genomics. 266, 720–31.

    Article  PubMed  CAS  Google Scholar 

  74. Mackay, T.F., Stone, E.A. and Ayroles, J.F. (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet. 10, 565–77.

    Article  PubMed  CAS  Google Scholar 

  75. Rosin, F.M., Watanabe, N., Cacas, J.L., Kato, N., Arroyo, J.M., Fang, Y., May, B., Vaughn, M., Simorowski, J., Ramu, U., McCombie, R.W., Spector, D.L., Martienssen, R.A. and Lam, E. (2008). Genome-wide transposon tagging reveals location-dependent effects on transcription and chromatin organization in Arabidopsis. Plant J. 55, 514–25.

    Article  PubMed  CAS  Google Scholar 

  76. Liu, S., Dietrich, C.R. and Schnable, P.S. (2009) DLA-based strategies for cloning insertion mutants: cloning the gl4 locus of maize using mu transposon tagged alleles. Genetics. 183, 1215–25.

    Article  PubMed  CAS  Google Scholar 

  77. Koprek, T., McElroy, D., Louwerse, J., Williams-Carrier, R. and Lemaux, P.G. (2000) An efficient method for dispersing Ds elements in the barley genome as a tool for determining gene function. Plant J. 24, 253–63.

    Article  PubMed  CAS  Google Scholar 

  78. Zhao, T., Palotta, M., Langridge, P., Prasad, M., Graner, A., Schulze-Lefert, P. and Koprek, T. (2006) Mapped Ds/T-DNA launch pads for functional genomics in barley. Plant J. 47, 811–26.

    Article  PubMed  Google Scholar 

  79. Lazarow, K. and Lütticke, S. (2009) An Ac/Ds-mediated gene trap system for functional genomics in barley. BMC Genomics. 10, 55.

    Article  PubMed  Google Scholar 

  80. van Enckevort, L.J., Droc, G., Piffanelli, P., Greco, R., Gagneur, C., Weber, C., González, V.M., Cabot, P., Fornara, F., Berri, S., Miro, B., Lan, P., Rafel, M., Capell, T., Puigdomènech, P., Ouwerkerk, P.B., Meijer, A.H., Pe’, E., Colombo, L., Christou, P., Guiderdoni, E., Pereira, A. (2005) EU-OSTID: a collection of transposon insertional mutants for functional genomics in rice. Plant Mol Biol. 59, 99–110.

    Article  PubMed  CAS  Google Scholar 

  81. Luan, W.J., He, C.K., Hu, G.C., Dey, M., Fu, Y.P., Si, H.M., Zhu, L., Liu, W.Z., Duan, F., Zhang, H., Liu, W.Y., Zhuo, R.Y., Garg, A., Wu, R. and Sun, Z.X. (2008) An efficient field screening procedure for identifying transposants for constructing an Ac/Ds-based insertional-mutant library of rice. Genome. 51, 41–9.

    Article  PubMed  CAS  Google Scholar 

  82. Jiang, S.Y., Bachmann, D., La, H., Ma, Z., Venkatesh, P.N., Ramamoorthy, R. and Ramachandran, S. (2007) Ds insertion mutagenesis as an efficient tool to produce diverse variations for rice breeding. Plant Mol Biol. 65, 385–402.

    Article  PubMed  CAS  Google Scholar 

  83. Park, S.H., Jun, N.S., Kim, C.M., Oh, T.Y., Huang, J., Xuan, Y.H., Park, S.J., Je, B.I., Piao, H.L., Park, S.H., Cha, Y.S., Ahn, B.O., Ji, H.S., Lee, M.C., Suh, S.C., Nam, M.H., Eun, M.Y., Yi, G., Yun, D.W. and Han, C.D. (2007) Analysis of gene-trap Ds rice populations in Korea. Plant Mol Biol. 65, 373–84.

    Article  PubMed  CAS  Google Scholar 

  84. Ito, Y., Eiguchi, M. and Kurata, N. (2004) Establishment of an enhancer trap system with Ds and GUS for functional genomics in rice. Mol Genet Genomics. 271, 639–50.

    Article  PubMed  CAS  Google Scholar 

  85. Greco, R., Ouwerkerk, P.B., Taal, A.J., Sallaud, C., Guiderdoni, E., Meijer, A.H., Hoge, J.H. and Pereira, A. (2004) Transcription and somatic transposition of the maize En/Spm transposons system in rice. Mol Genet Genomics. 270, 514–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research supported by National Science Foundation grant DBI 0733857 to James Birchler.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivanandan Chudalayandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chudalayandi, S. (2011). Enhancer Trapping in Plants. In: Birchler, J. (eds) Plant Chromosome Engineering. Methods in Molecular Biology, vol 701. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-957-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-957-4_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-956-7

  • Online ISBN: 978-1-61737-957-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics