Skip to main content

3D Structuring of Biocompatible and Biodegradable Polymers Via Stereolithography

  • Protocol
  • First Online:
3D Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 695))

Abstract

The production of user-defined 3D microstructures from biocompatible and biodegradable materials via free-form fabrication is an important step to create off-the-shelf technologies to be used as tissue engineering scaffolds. One method of achieving this is the microstereolithography of block copolymers, allowing high resolution microstructuring of materials with tuneable physical properties. A versatile protocol for the production and photofunctionalisation of pre-polymers for microstereolithography is presented along with a discussion of the possible microstereolithography set-ups and previous work in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martina, M., Hutmacher, D.W. (2007) Biodegradable polymers applied in tissue engineering research: a review. Polym. Int. 56(2), 45–57.

    Article  Google Scholar 

  2. Kwon, I.K., Matsuda, T. (2005) Photo-polymerized microarchitectural constructs prepared by microstereolithography (μSL) using liquid acrylate-end-capped trimethylene carbonate-based prepolymers. Biomaterials 26(14), 1675–1684.

    Article  PubMed  CAS  Google Scholar 

  3. Lee, K.S., Kim, R.H., Yang, D.Y., Park, S.H. (2008) Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog. Polym. Sci. 33(6), 631–681.

    Article  CAS  Google Scholar 

  4. Amsden, B. (2007) Curable, biodegradable elastomers: emerging biomaterials for drug delivery and tissue engineering. Soft Matter 3(11), 1335–1348.

    Article  CAS  Google Scholar 

  5. Declercq, H.A., Cornelissen, M.J., Gorskiy, T.L., Schacht, E.H. (2006) Osteoblast behaviour on in situ photopolymerizable three-dimensional scaffolds based on d, l-lactide, ε-caprolactone and trimethylene carbonate. J. Mater. Sci. Mater. Med. 17(2), 113–122.

    Article  PubMed  Google Scholar 

  6. Meretoja, V.V., Helminen, A.O., Korventausta, J.J., Haapa-aho, V., Seppala. J.V., Narhi, T.O. (2006) Crosslinked poly(ε-caprolactone/d, l-lactide)/bioactive glass composite scaffolds for bone tissue engineering. J. Biomed. Mater. Res. A 77A(2), 261–268.

    Article  CAS  Google Scholar 

  7. Porter, J.R., Henson, A., Popat, K.C. (2009) Biodegradable poly([ε]-caprolactone) nanowires for bone tissue engineering applications. Biomaterials 30(5), 780–788.

    Article  PubMed  CAS  Google Scholar 

  8. Griffith, L.G. (2000) Polymeric biomaterials. Acta Mater. 48(1), 263–277.

    Article  CAS  Google Scholar 

  9. Ashammakhi, N., Makela, E.A., Tormala, P., Waris, T., Rokkanen, P. (2000) Effect of self-reinforced polyglycolide membrane on osteogenesis: an experimental study in rats. Eur. J. Plast. Surg. 23(8), 423–428.

    Article  Google Scholar 

  10. Hou, Q., Grijpma, D.W., Feijen, J. (2009) Creep-resistant elastomeric networks prepared by photocrosslinking fumaric acid monoethyl ester-functionalized poly(trimethylene carbonate) oligomers. Acta Biomater. 5(5), 1543–1551.

    Article  PubMed  CAS  Google Scholar 

  11. Martin, D.P., Williams, S.F. (2003) Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem. Eng. J. 16(2), 97–105.

    Article  CAS  Google Scholar 

  12. Zeng, F., Lee, H., Allen, C. (2006) Epidermal growth factor-conjugated poly(ethylene glycol)-block-poly(δ-valerolactone) copolymer micelles for targeted delivery of chemotherapeutics. Bioconjug. Chem. 17(2), 399–409.

    Article  PubMed  CAS  Google Scholar 

  13. Han, L.H., Mapili, G., Chen, S., Roy, K. (2008) Projection microfabrication of three-dimensional scaffolds for tissue engineering. J. Manufact. Sci. Eng. Trans. ASME 130(2), 4 021005–1–4.

    Google Scholar 

  14. Lv, N.J., Meng, S., Guo, Z. et al. (2008) Improving the biocompatibility of poly(ε-caprolactone) by surface immobilization of chitosan and heparin. E-Polymers, 139, 1–13.

    Google Scholar 

  15. Liu, F., Zhao, Z., Yang, J., Wei, J., Li, S. (2008) Enzyme-catalyzed degradation of poly(l-lactide)/poly(ε-caprolactone) diblock, triblock and four-armed copolymers. Polym. Degrad. Stab. 2(94), 227–233.

    Google Scholar 

  16. Wen, X., Tresco, P.A. (2006) Fabrication and characterization of permeable degradable poly(dl-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels. Biomaterials 27(20), 3800–3809.

    Article  PubMed  CAS  Google Scholar 

  17. Kenawy, E-R., Abdel-Hay, F.I., El-Newehy, M.H., Wnek, G.E. (2009) Processing of polymer nanofibers through electrospinning as drug delivery systems. Mater. Chem. Phys. 113(1), 296–302.

    Article  CAS  Google Scholar 

  18. Baker, S.C., Rohman, G., Southgate, J., Cameron, N.R. (2009) The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering. Biomaterials 30(7), 1321–1328.

    Article  PubMed  CAS  Google Scholar 

  19. Hollister, S.J. (2005) Porous scaffold design for tissue engineering. Nat. Mater. 4, 518–524.

    Article  PubMed  CAS  Google Scholar 

  20. Abbott, A. (2003) Cell culture: biology’s new dimension. Nature 424, 870–872.

    Article  PubMed  CAS  Google Scholar 

  21. Hutmacher, D.W., Sittinger, M., Risbud, M.V. (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trend Biotechnol. 22(7), 354–362.

    Article  CAS  Google Scholar 

  22. Roach, P., Eglin, D., Rohde, K., Perry, C.C. (2007) Modern biomaterials: a review – bulk properties and implications of surface modifications. J. Mater. Sci. Mater. Med. 18(7), 1263–1277.

    Article  PubMed  CAS  Google Scholar 

  23. Engelmayr, G.C., Cheng, M.Y., Bettinger, C.J., Borenstein, J.T., Langer, R., Freed, L.E. (2008) Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat. Mater. 7, 1003–1010.

    Article  PubMed  CAS  Google Scholar 

  24. Nagata, M., Kitazima, I. (2006) Photocurable biodegradable poly(Îμ-caprolactone)/poly(ethylene glycol) multiblock copolymers showing shape-memory properties. Colloid Polym. Sci. 284(4), 380–386.

    Article  CAS  Google Scholar 

  25. Mizutani, M., Matsuda, T. (2002) Liquid photocurable biodegradable copolymers: in vivo degradation of photocured poly(ε-caprolactone-co-trimethylene carbonate). J. Biomed. Mater. Res. 61(1), 53–60.

    Article  PubMed  CAS  Google Scholar 

  26. Lendlein, A., Langer, R. (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573), 1673–1676.

    Article  PubMed  Google Scholar 

  27. Nicodemus, G.D., Bryant, S.J. (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng. Part B 14(2), 149–165.

    Article  CAS  Google Scholar 

  28. Jeon, O., Bouhadir, K.H., Mansour, J.M., Alsberg, E. (2009) Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 30(14), 2724–2734.

    Article  PubMed  CAS  Google Scholar 

  29. Li, S.M., Pignol, M., Gasc, F., Vert, M. (2004) Synthesis, characterization, and enzymatic degradation of copolymers prepared from ε-caprolactone and beta-butyrolactone. Macromolecules 37(26), 9798–9803.

    Article  CAS  Google Scholar 

  30. Zurita, R., Franco, L., Puiggalí, J., Rodríguez-Galán, A. (2007) The hydrolytic degradation of a segmented glycolide–trimethylene carbonate copolymer (Maxon™). Polym. Degrad. Stab. 92(6), 975–985.

    Article  CAS  Google Scholar 

  31. Serbin, J., Egbert, A., Ostendorf, A, et al. (2003) Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics. Opt. Lett. 28(5), 301–303.

    Article  PubMed  CAS  Google Scholar 

  32. Ovsianikov, A., Ostendorf, A., Chichkov, B.N. (2007) Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine. Appl. Surf. Sci. 253(15), 6599–6602.

    Article  CAS  Google Scholar 

  33. Lee, S.J., Kang, H.W., Park, J.K., Rhie, J.W., Hahn, S.K., Cho, D.W. (2008) Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds. Biomed. Microdev. 10(2), 233–241.

    Article  CAS  Google Scholar 

  34. Wu, S.H., Serbin, J., Gu, M. (2006) Two-photon polymerisation for three-dimensional micro-fabrication. J. Photochem. Photobiol. A Chem. 181(1), 1–11.

    Article  CAS  Google Scholar 

  35. Doraiswamy, A., Jin, C., Narayan, R.J., et al. (2006) Two photon induced polymerization of organic–inorganic hybrid biomaterials for microstructured medical devices. Acta. Biomater. 2(3), 267–275.

    Article  PubMed  CAS  Google Scholar 

  36. Pego, A.P., Poot, A.A., Grijpma, D.W., Feijen, J. (2001) Copolymers of trimethylene carbonate and e-caprolactone for porous nerve guides: synthesis and properties. J. Biomater. Sci. Polym. Ed. 12(1), 35–53.

    Article  PubMed  CAS  Google Scholar 

  37. Pego, A.P., Vleggeert-Lankamp, C.L.A.M., Deenen, M., et al. (2003) Adhesion and growth of human schwann cells on trimethylene carbonate (co)polymers. J. Biomed. Mater. Res. A 67(3), 876–885.

    Article  PubMed  Google Scholar 

  38. Claeyssens, F., Hasan, E.A., Gaidukeviciute, A, et al. (2009) Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir 25(5), 3219–3223.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

FC thanks EPSRC for an EPSRC Life Science Interface Fellowship (Grant No. EP/C532066/1).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gill, A.A., Claeyssens, F. (2011). 3D Structuring of Biocompatible and Biodegradable Polymers Via Stereolithography. In: Haycock, J. (eds) 3D Cell Culture. Methods in Molecular Biology, vol 695. Humana Press. https://doi.org/10.1007/978-1-60761-984-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-984-0_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-983-3

  • Online ISBN: 978-1-60761-984-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics