Skip to main content

Practical Aspects of OCT Imaging in Tissue Engineering

  • Protocol
  • First Online:
Book cover 3D Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 695))

Abstract

Optical coherence tomography (OCT) is a non-destructive, non-invasive imaging modality conceptually similar to ultrasound imaging but uses near-infrared radiation rather than sound. It is attracting interest throughout the medical community as a tool for ophthalmic scanning (especially of the retina) and potentially for the diagnosis of many other illnesses such as epithelial cancer, connective tissue disorders, and atherosclerosis, as well as for surgical guidance. More recently, it has begun to be explored as a tool for the real-time monitoring of the growth and development of tissue-engineered products. OCT has certain unique advantages over traditional confocal microscopy; in particular, it can image to depths measured in hundreds of microns rather than tens of microns in intact biological tissues and with working distances in excess of 1 cm. Also it possesses label-free contrast for imaging ordered collagen (via birefringence), flow velocity and local shear-rate (via Doppler shifts), and sub-cellular structure (via coherent speckle contrast). The purpose of this short review is to introduce OCT technology and also give guidelines on its practical implementation to the interested researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tomlins, P.H. and Wang, R.K. (2005) Theory, developments and applications of optical coherence tomography. J. Phys. D Appl. Phys. 38(15), 2519–2535.

    Article  CAS  Google Scholar 

  2. Podoleanu, A.G. (2000) Unbalanced versus balanced operation in an optical coherence tomography system. Appl. Opt. 39(1), 173–182.

    Article  PubMed  CAS  Google Scholar 

  3. Leitgeb, R., Hitzenberger, C.K. and Fercher, A.F. (2003) Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express 11(8), 889–894.

    Article  PubMed  CAS  Google Scholar 

  4. Choma, M.A., Sarunic, M.V., Yang, C.H. and Izatt, J.A. (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11(18), 2183–2189.

    Article  PubMed  Google Scholar 

  5. Yang, Y., Dubois, A., Qin, X.P., Li, J., El Haj, A. and Wang, R.K. (2006) Investigation of optical coherence tomography as an imaging modality in tissue engineering. Phys. Med. Biol. 51(7), 1649–1659.

    Article  PubMed  Google Scholar 

  6. Unterhuber, A., Povazay, B., Bizheva, K., Hermann, B., Sattmann, H., Stingl, A., Le, T., Seefeld, M., Menzel, R., Preusser, M., Budka, H., Schubert, C., Reitsamer, H., Ahnelt, P.K., Morgan, J.E., Cowey, A. and Drexler, W. (2004) Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography. Phys. Med. Biol. 49(7), 1235–1246.

    Article  PubMed  CAS  Google Scholar 

  7. Gangnus, S.V. and Matcher, S.J. (2008) Visible-light OCT spectrometer for microvascular oximetry. Proc SPIE 6847, D8471–D8471.

    Google Scholar 

  8. Wang, Y.M., Nelson, J.S., Chen, Z.P., Reiser, B.J., Chuck, R.S. and Windeler, R.S. (2003) Optimal wavelength for ultrahigh-resolution optical coherence tomography. Opt. Express 11(12), 1411–1417.

    Article  PubMed  Google Scholar 

  9. Sharma, U., Chang, E.W. and Yun, S.H. (2008) Long-wavelength optical coherence tomography at 1.7 μm for enhanced imaging depth 1,700 nm SS-OCT. Opt. Express 16(24), 19712–19723.

    Article  PubMed  CAS  Google Scholar 

  10. de Boer, J.F. and Milner, T.E. (2002) Review of polarization sensitive optical coherence tomography and Stokes vector determination. J. Biomed. Opt. 7(3), 359–371.

    Article  PubMed  Google Scholar 

  11. Mason, C., Markusen, J.F., Town, M.A., Dunnill, P. and Wang, R.K. (2004) Doppler optical coherence tomography for measuring flow in engineered tissue. Biosens. Bioelectron. 20(3), 414–423.

    Article  PubMed  CAS  Google Scholar 

  12. Boppart, S.A., Oldenburg, A.L., Xu, C. and Marks, D.L. (2005) Optical probes and techniques for molecular contrast enhancement in coherence imaging. J. Biomed. Opt. 10(4), 041208.

    Article  Google Scholar 

  13. Oldenburg, A.L., Hansen, M.N., Zweifel, D.A., Wei, A. and Boppart, S.A. (2006) Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. Opt. Express 14(15), 6724–6738.

    Article  PubMed  CAS  Google Scholar 

  14. Schmitt, J.M., Xiang, S.H. and Yung, K.M. (1999) Speckle in optical coherence tomography. J. Biomed. Opt. 4(1), 95–105.

    Article  Google Scholar 

  15. Gossage, K.W., Smith, C.M., Kanter, E.M., Hariri, L.P., Stone, A.L., Rodriguez, J.J., Williams, S.K. and Barton, J.K. (2006) Texture analysis of speckle in optical coherence tomography images of tissue phantoms. Phys. Med. Biol. 51, 1563–1575.

    Article  PubMed  Google Scholar 

  16. Ko, H.J., Tan, W., Stack, R., Boppart, S.A. (2006) Optical coherence elastography of engineered and developing tissue. Tissue Eng. 12(1), 63–73.

    Article  PubMed  Google Scholar 

  17. Tuchin, V.V. (2007) A clear vision for laser diagnostics. IEEE J. Sel. Top. Quantum Electron. 13(6), 1621–1628.

    Article  CAS  Google Scholar 

  18. Leitgeb, R.A., Hitzenberger, C.K., Fercher, A.F. and Bajraszewski, T. (2003) Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography. Opt. Lett. 28(22), 2201–2203.

    Article  PubMed  Google Scholar 

  19. Matcher, S.J., Winlove, C.P. and Gangnus, S.V. (2004) The collagen structure of bovine intervertebral disc studied using polarization sensitive optical coherence tomography. Phys. Med. Biol. 49, 1295–1306.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Matcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Matcher, S.J. (2011). Practical Aspects of OCT Imaging in Tissue Engineering. In: Haycock, J. (eds) 3D Cell Culture. Methods in Molecular Biology, vol 695. Humana Press. https://doi.org/10.1007/978-1-60761-984-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-984-0_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-983-3

  • Online ISBN: 978-1-60761-984-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics