Skip to main content

Inducible Transgenic Mouse Models

  • Protocol
  • First Online:
Transgenic Mouse Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 693))

Abstract

Inducible transgenic mouse models allow for the activation of genes in specific cells and tissues at specific times. Expression levels are dependent on the dose of the agent administered. Effective experimental models are characterized by low background levels of the regulated gene and induction to high levels with sub-physiological levels of inducing agents. The most commonly used methods to control gene expression in mouse models are based on the tet-operon/repressor bi-transgenic system and the estrogen receptor (ER) ligand-binding domain. Less commonly used systems to control gene expression in transgenic mice take advantage of the ligand-binding domain of the progesterone receptor, and the lac and GAL4 inducible systems. The tetracycline-regulated transgenic models are typically designed to activate the expression of the gene of interest in a specific cell type at a specific point in time. The ER is most commonly fused with Cre recombinase, although it can be used with transcription factors, kinases, etc., that are active in the nucleus. Cre-ER transgenes allow for the induction of recombinase activity in specific cells at defined time points. Cre recombinase is most often found in combination with conditional alleles to inactivate gene expression. When used for gene activation, Cre removes stop cassettes from transgenes and thus allows the expression of reporter or other molecules. Thus, the tetracycline-regulated and Cre-ER systems are complementary in mouse models, with utility in the cell-specific activation and inactivation of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badea T.C., Wang Y., Nathans J. (2003) A noninvasive genetic/pharmacologic strategy for visualizing cell morphology and clonal relationships in the mouse. J Neurosci 23, 2314–22

    PubMed  CAS  Google Scholar 

  2. Hayashi, S., McMahon, A.P. (2002) Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 244, 305–18

    Article  PubMed  CAS  Google Scholar 

  3. Lobe, C.G., Koop, K.E., Kreppner, W., Lomeli, H., Gertsenstein, M., Nagy, A. (1999) Z/AP, a double reporter for cre-mediated recombination. Dev Biol 208, 281–92

    Article  PubMed  CAS  Google Scholar 

  4. Soriano, P. (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21, 70–1

    Article  PubMed  CAS  Google Scholar 

  5. Furth, P.A., St. Onge, L., Boger, H., Gruss, P., Gossen, M., Kistner, A., Bujard, H., Hennighausen, L. (1994) Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc Natl Acad Sci U S A 91, 9302–6

    Article  PubMed  CAS  Google Scholar 

  6. Kistner, A., Gossen, M., Zimmermann, F., Jerecic, J., Ullmer, C., Lubbbert, H., Bujard, H. (1996) Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc Natl Acad Sci USA 93, 10933–8

    Article  PubMed  CAS  Google Scholar 

  7. Urlinger, S., Baron, U., Thellmann, M., Hasan, M.T., Bujard H., Hillen, W. (2000) Exploring the sequence space for tetracycline-dependent dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci USA 97, 7963–8

    Article  PubMed  CAS  Google Scholar 

  8. Freundlieb, S., Schirra-Müller, C., Bujard, H. (1999) A tetracycline controlled activation/repression system with increased potential for gene transfer into mammalian cells. J Gene Med 1, 4–12

    Article  PubMed  CAS  Google Scholar 

  9. Bockamp, E., Christel, C., Hameyer, D., Khobta, A., Maringer, M., Reis, M., Heck, R., Cabezas-Wallscheid, N., Epe, B., Oesch-Bartlomowicz, B., Kaina, B., Schmitt, S., Eshkind, L. (2007) Generation and characteri­zation of tTS-H4: a novel transcriptional repressor that is compatible with the reverse tetracycline-controlled TET-ON system. J Gene Med 9, 308–18

    Article  PubMed  CAS  Google Scholar 

  10. Yao, F., Pomahac, B., Visovatti, S., Chen, M., Johnson, S., Augustinova, H., Svensjo, T., Eriksson, E. (2007) Systemic and localized reversible regulation of transgene expression by tetracycline with tetR-mediated trans­cription repression switch. J Surg Res 138, 267–74

    Article  PubMed  CAS  Google Scholar 

  11. Dobrovolsky, V.N., Heflich, R.H. (2007) On the use of the T-REx tetracycline-inducible gene expression system in vivo. Biotechnol Bioeng 98, 719–23

    Article  PubMed  CAS  Google Scholar 

  12. Szulc, J., Wiznerowicz, M., Sauvain, M.O., Trono, D., Aebischer, P. (2006) A versatile tool for conditional gene expression and knock­down. Nat Methods 3, 109–16

    Article  PubMed  CAS  Google Scholar 

  13. Zhu, Z., Ma, B., Homer, R.J., Zheng, T., Elias, J.A. (2001) Use of the tetracycline-controlled transcriptional silencer (tTS) to eliminate transgene leak in inducible overexpression transgenic mice. J Biol Chem 276, 25222–9

    Article  PubMed  CAS  Google Scholar 

  14. Wiznerowicz, M., Jakobsson, J., Szulc, J., Liao, S., Quazzola, A., Beermann, F., Aebischer, P., Trono, D. (2007) The Krüppel-associated box repressor domain can trigger de novo promoter methylation during mouse early embryogenesis. J Biol Chem 282, 34535–41

    Article  PubMed  CAS  Google Scholar 

  15. Martindale, J.J., Fernandez, R., Thuerauf, D., Whittaker, R., Gude, N., Sussman, M.A., Glembotski, C.C. (2006) Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6. Circ Res 98, 1186–93

    Article  PubMed  CAS  Google Scholar 

  16. Scholl, F.A., Dumesic, P.A., Khavari, P.A. (2004) Mek1 alters epidermal growth and differentiation. Cancer Res 64, 6035–40

    Article  PubMed  CAS  Google Scholar 

  17. Gu, H., Marth, J.D., Orban, P.C., Mossmann, H., Rajewsky, K. (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265, 103–6

    Article  PubMed  CAS  Google Scholar 

  18. Metzger, D., Clifford, J., Chiba, H., Chambon, P. (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A 92, 6991–5

    Article  PubMed  CAS  Google Scholar 

  19. Feil, R., Brocard, J., Mascrez, B., LeMeur, M., Metzger, D., Chambon, P. (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci USA 93, 10887–90

    Article  PubMed  CAS  Google Scholar 

  20. Feil, R., Wagner, J., Metzger, D., Chambon, P. (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237, 752–7

    Article  PubMed  CAS  Google Scholar 

  21. Shimshek, D.R., Kim, J., Hübner, M.R., Spergel, D.J., Buchholz, F., Casanova, E., Stewart, A.F., Seeburg, P.H., Sprengel, R. (2002) Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis 32, 19–26

    Article  PubMed  CAS  Google Scholar 

  22. Casanova, E., Fehsenfeld, S., Lemberger, T., Shimshek, D.R., Sprengel, R., Mantamadiotis, T. (2002) ER-based double iCre fusion protein allows partial recombination in forebrain. Genesis 34, 208–14

    Article  PubMed  CAS  Google Scholar 

  23. Nir, T., Melton, D.A., Dor, Y. (2007) Recovery from diabetes in mice by beta cell regeneration. J Clin Invest 117, 2553–61

    Article  PubMed  CAS  Google Scholar 

  24. Chen, Q., Nakajima, A., Meacham, C., Tang, Y.P. (2006) Elevated cholecystokininergic tone constitutes an important molecular/neuronal mechanism for the expression of anxiety in the mouse. Proc Natl Acad Sci USA 103, 3881–6

    Article  PubMed  CAS  Google Scholar 

  25. Novak, A., Guo, C., Yang, W., Nagy, A., Lobe, C.G. (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28, 147–55

    Article  PubMed  CAS  Google Scholar 

  26. Vintersten, K., Monetti, C., Gertsenstein, M., Zhang, P., Laszlo, L., Biechele, S., Nagy, A. (2004) Mouse in red: red fluorescent protein expression in mouse ES cells, embryos, and adult animals. Genesis 40, 241–6

    Article  PubMed  CAS  Google Scholar 

  27. Hochedlinger, K., Yamada, Y., Beard. C., Jaenisch, R. (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465–77

    Article  PubMed  CAS  Google Scholar 

  28. Niwa, H., Yamamura, K., Miyazaki, J. (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–9

    Article  PubMed  CAS  Google Scholar 

  29. Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A., Arnheim, N. (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–4

    Article  PubMed  CAS  Google Scholar 

  30. Guo, B., Bi, Y. (2002) Cloning PCR pro­ducts. An overview. Methods Mol Biol 192, 111–9

    PubMed  CAS  Google Scholar 

  31. Truett, G.E., Heeger, P., Mynatt, R.L., Truett, A.A., Walker, J.A., Warman, M.L. (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29, 52–4

    PubMed  CAS  Google Scholar 

  32. Kellendonk, C., Simpson, E.H., Polan, H.J., Malleret, G., Vronskaya, S., Winiger, V., Moore, H., Kandel, E.R. (2006) Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron 49, 603–15

    Article  PubMed  CAS  Google Scholar 

  33. Kiermayer, C., Conrad, M., Schneider, M., Schmidt, J., Brielmeier, M. (2007) Optimization of spatiotemporal gene inactivation in mouse heart by oral application of tamoxifen citrate. Genesis 45, 11–16

    Article  PubMed  CAS  Google Scholar 

  34. Chow, L.M.L., Zhang, J., Baker, S.J. (2008) Inducible Cre recombinase activity in mouse mature astrocytes and adult neural precursor cells. Transgenic Res 17, 919–28

    Article  PubMed  CAS  Google Scholar 

  35. Ji, B., Song, J., Tsou, L., Bi, Y., Gaiser, S., Mortensen, R., Logsdon, C. (2008) Robust acinar cell transgene expression of CreErT via BAC recombineering. Genesis 46, 390–5

    Article  PubMed  CAS  Google Scholar 

  36. Chen, B.Y., Janes, H.W., Chen, S. (2002) Computer programs for PCR primer design and analysis. Methods Mol Biol 192, 19–29

    PubMed  CAS  Google Scholar 

  37. Hayward, A.M., Lemke, L.B., Bridgeford, E.C., Theve, E.J., Jackson, C.N., Cunliffe-Beamer, T.L., Marini, R.P. (2007) Biomethodology and surgical techniques. In: Fox, J., Barthold, S., Davisson, M., Newcomer, C., Quimby, F., Smith, A. (eds.) The mouse in biomedical research. Vol. 3. Academic Press, New York, pp. 437–88

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Saunders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Saunders, T.L. (2011). Inducible Transgenic Mouse Models. In: Hofker, M., van Deursen, J. (eds) Transgenic Mouse Methods and Protocols. Methods in Molecular Biology, vol 693. Humana Press. https://doi.org/10.1007/978-1-60761-974-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-974-1_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-973-4

  • Online ISBN: 978-1-60761-974-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics