Advertisement

Quorum Sensing pp 113-130 | Cite as

Luminescent Reporters and Their Applications for the Characterization of Signals and Signal-Mimics that Alter LasR-Mediated Quorum Sensing

  • Ali Alagely
  • Sathish Rajamani
  • Max Teplitski
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 692)

Abstract

In many pathogenic bacteria, quorum sensing (QS) controls expression of genes that are involved in virulence, production and resistance to antibiotics, formation and maintenance of microbial multicellular consortia on biotic and abiotic surfaces of medical and industrial importance. N-acyl homoserine lactones (AHL) are the best characterized quorum sensing signals in Gram-negative bacteria. Interference with AHL-mediated QS, therefore, is considered an attractive strategy for controlling virulence in pathogens. The search for AHL signals and their mimics has been facilitated by the development of sensitive bioassays, in which QS reporters luminesce in response to AHL signals. These bioassays have already led to the identification of dozens of compounds with QS modulating activities. The characterization of the mode of action of QS signals and their mimics requires follow-up biochemical studies. Here, we describe a set of luminescent reporters, which could be used in high, medium or low throughput format, for the discovery and validation of agonists or antagonists of the Las QS system of Pseudomonas aeruginosa. These nearly isogenic reporters contain truncations or point mutations in the AHL binding domain of the AHL receptor LasR, as well as mutations in the promoter for the gene encoding LasI AHL synthase. We also developed reporters for documenting the regulation of lasI and lasR promoters. The use of these reporters significantly streamlines identification and characterization of the Las QS signal agonists and antagonists prior to biochemical experiments. To test the usefulness of these reporters, we carried out bioassays with patulin, a known inhibitor of Las QS.

Key words

Cell-to-cell signaling rsaL Quorum sensing inhibition Quorum sensing signal-mimic LuxR 

Notes

Acknowledgments

The development of the reporters and experiments presented in this manuscript were supported by USDA NRI grant # 2007-35319-18158 and funding from Protect Our Reefs Foundation.

References

  1. 1.
    Cha, C., Gao, P., Chen, Y. C., Shaw, P. D., and Farrand, S. K. (1998) Production of acyl-homoserine lactone quorum-sensing signals by Gram-negative plant-associated bacteria. Mol. Plant Microbe Interact. 11, 1119–1129.PubMedCrossRefGoogle Scholar
  2. 2.
    Fuqua, C., and Eberhard, A. (1999) Signal generation in autoinduction systems: synthesis of acylated homoserine lactones by LuxI-type proteins. in “Cell-cell signalling in bacteria” (Dunny, G. M., and Winans, S. C., Eds.), pp. 211–42, American Society for Microbiology, Washington, DC.Google Scholar
  3. 3.
    Zhang, R. G., Pappas, T., Brace, J. L., Miller, P. C., Oulmassov, T., Molyneaux, J. M., Anderson, J. C., Bashkin, J. K., Winans, S. C., and Joachimiak, A. (2002) Structure of a bacterial quorum sensing transcription factor complexed with pheromone and DNA. Nature 417, 971–974.PubMedCrossRefGoogle Scholar
  4. 4.
    Bottomley, M. J., Muraglia, E., Bazzo, R., and Carfi, A. (2007) Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. J. Biol. Chem. 282, 13592–13600.PubMedCrossRefGoogle Scholar
  5. 5.
    Kiratisin, P., Tucker, K. D., and Passador, L. (2002) LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. J. Bacteriol. 184, 4912–4919.PubMedCrossRefGoogle Scholar
  6. 6.
    Gilbert, K. B., Kim, T. H., Gupta, R., Greenberg, E. P., and Schuster, M. (2009) Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol. Microbiol. 73, 1072–1085.PubMedCrossRefGoogle Scholar
  7. 7.
    Cao, H., Baldini, R. L., and Rahme, L. G. (2001) Common mechanisms for pathogens of plants and animals. Annu. Rev. Phytopathol. 39, 259–284.PubMedCrossRefGoogle Scholar
  8. 8.
    Williams, P., and Camara, M. (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr. Opin. Microbiol. 12, 182–191.PubMedCrossRefGoogle Scholar
  9. 9.
    Juhas, M., Wiehlmann, L., Huber, B., Jordan, D., Lauber, J., Salunkhe, P., Limpert, A. S., von Gotz, F., Steinmetz, I., Eberl, L., and Tummler, B. (2004) Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. Microbiology 150, 831–841.PubMedCrossRefGoogle Scholar
  10. 10.
    Seed, P. C., Passador, L., and Iglewski, B. H. (1995) Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas Autoinducer PAI – an autoinduction regulatory hierarchy. J. Bacteriol. 177, 654–659.PubMedGoogle Scholar
  11. 11.
    Rampioni, G., Schuster, M., Greenberg, E. P., Bertani, I., Grasso, M., Venturi, V., Zennaro, E., and Leoni, L. (2007) RsaL provides quorum sensing homeostasis and functions as a global regulator of gene expression in Pseudomonas aeruginosa. Mol. Microbiol. 66, 1557–1565.PubMedCrossRefGoogle Scholar
  12. 12.
    Dubern, J. F., Lugtenberg, B. J. J., and Bloemberg, G. V. (2006) Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. J. Bacteriol. 188, 2898–2906.PubMedCrossRefGoogle Scholar
  13. 13.
    Rampioni, G., Polticelli, F., Bertani, I., Righetti, K., Venturi, V., Zennaro, E., and Leoni, L. (2007) The Pseudomonas quorum-sensing regulator RsaL belongs to the tetrahelical superclass of H-T-H proteins. J. Bacteriol. 189, 1922–1930.PubMedCrossRefGoogle Scholar
  14. 14.
    Rasmussen, T. B., and Givskov, M. (2006) Quorum sensing inhibitors: a bargain of effects. Microbiology 152, 895–904.PubMedCrossRefGoogle Scholar
  15. 15.
    Rasmussen, T. B., Skindersoe, M. E., Bjarnsholt, T., Phipps, R. K., Christensen, K. B., Jensen, P. O., Andersen, J. B., Koch, B., Larsen, T. O., Hentzer, M., Eberl, L., Hoiby, N., and Givskov, M. (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151, 1325–1340.PubMedCrossRefGoogle Scholar
  16. 16.
    McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Camara, M., Daykin, M., Lamb, J. H., Swift, S., Bycroft, B. W., Stewart, G. S., and Williams, P. (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143, 3703–3711.PubMedCrossRefGoogle Scholar
  17. 17.
    Winson, M. K., Swift, S., Fish, L., Throup, J. P., Jorgensen, F., Chhabra, S. R., Bycroft, B. W., Williams, P., and Stewart, G. S. (1998) Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol. Lett. 163, 185–192.PubMedCrossRefGoogle Scholar
  18. 18.
    Winson, M. K., Swift, S., Hill, P. J., Sims, C. M., Griesmayr, G., Bycroft, B. W., Williams, P., and Stewart, G. S. (1998) Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol. Lett. 163, 193–202.PubMedCrossRefGoogle Scholar
  19. 19.
    Teplitski, M., Robinson, J. B., and Bauer, W. D. (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant Microbe Interact. 13, 637–648.PubMedCrossRefGoogle Scholar
  20. 20.
    Rajamani, S., Bauer, W. D., Robinson, J. B., Farrow, J. M., Pesci, E. C., Teplitski, M., Gao, M., Sayre, R. T., and Phillips, D. A. (2008) The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial Quorum-Sensing receptor. Mol. Plant Microbe Interact. 21, 1184–1192.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang, R. F., and Kushner, S. R. (1991) Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 100, 195–199.PubMedCrossRefGoogle Scholar
  22. 22.
    Kaufmann, G. F., Sartorio, R., Lee, S. H., Rogers, C. J., Meijler, M. M., Moss, J. A., Clapham, B., Brogan, A. P., Dickerson, T. J., and Janda, K. D. (2005) Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Proc. Natl. Acad. Sci. U. S. A. 102, 309–314.PubMedCrossRefGoogle Scholar
  23. 23.
    Yates, E. A., Philipp, B., Buckley, C., Atkinson, S., Chhabra, S. R., Sockett, R. E., Goldner, M., Dessaux, Y., Camara, M., Smith, H., and Williams, P. (2002) N-acyl homoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect. Immun. 70, 5635–5646.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ali Alagely
    • 1
  • Sathish Rajamani
    • 2
    • 3
  • Max Teplitski
    • 1
  1. 1.Soil and Water Sciences Department, Genetics Institute, Institute of Food and Agricultural Sciences (IFAS)University of FloridaGainesvilleUSA
  2. 2.Department of Microbiology and ImmunologyDartmouth Medical SchoolHanoverUSA
  3. 3.Life Sciences InstituteAnn ArborUSA

Personalised recommendations