Quorum Sensing pp 101-111 | Cite as

Determination of Acyl Homoserine Lactone and Tetramic Acid Concentrations in Biological Samples

  • Colin A. Lowery
  • Gunnar F. Kaufmann
  • Kim D. JandaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 692)


Within environmental communities, there is a constant struggle for survival, as nutrients are often limited. In response, bacteria have developed elaborate methods to deal with competitors. One such mechanism is the coordination of behaviors and function via the exchange of small chemical signals in a process known as quorum sensing. This process is especially prominent in the pathogenicity of Pseudomonas aeruginosa, an opportunistic human pathogen that forms sessile communities known as biofilms. These biofilms play an important role in the lifestyle of P. aeruginosa, either in their natural environment or during establishment and maintenance of infection in human hosts; thus, they often have grievous effects on human health. As such, a method for the detection of these QS signals may provide insights into the pathogenicity and survival of P. aeruginosa. In this chapter, we present a method for the extraction and quantitation of the P. aeruginosa QS signal N-3-oxo-dodecanoyl-homoserine lactone, and its rearranged tetramic acid product, C12-TA, which itself has implications as a survival tactic used by P. aeruginosa.

Key words

Quorum sensing Biofilm Pseudomonas aeruginosa Acyl homoserine lactone Tetramic acid 



This work was supported by the National Institutes of Health (AI079503 to KDJ, AI080715 to GFK), the Skaggs Institute for Chemical Biology, and a Sanofi-Aventis Graduate Fellowship (CAL). We thank Prof. Barbara Iglewski for providing gfp-expressing P. aeruginosa and Dr. Victoria Wagner for helpful discussions. We would also like to thank Dr. Malcolm Wood and Dr. William Kiosses for assistance with microscopy experiments, as well as Dr. Gary Siuzdak and Bill Webb of the Scripps Center for Mass Spectrometry for assistance with the mass spectrometry experiments. This manuscript has been assigned TSRI manuscript #20556.


  1. 1.
    Heurlier, K., Denervaud, V., and Haas, D. (2006) Impact of quorum sensing on fitness of Pseudomonas aeruginosa. Int J Med Microbiol 296, 93–102.PubMedCrossRefGoogle Scholar
  2. 2.
    Smith, R. S., and Iglewski, B. H. (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6, 56–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W., and Greenberg, E. P. (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–8.PubMedCrossRefGoogle Scholar
  4. 4.
    de Kievit, T. R., Kakai, Y., Register, J. K., Pesci, E. C., and Iglewski, B. H. (2002) Role of the Pseudomonas aeruginosa las and rhl quorum-sensing systems in rhli regulation. FEMS Microbiol Lett 212, 101–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Pesci, E. C., Pearson, J. P., Seed, P. C., and Iglewski, B. H. (1997) Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179, 3127–32.PubMedGoogle Scholar
  6. 6.
    Wagner, V. E., Li, L. L., Isabella, V. M., and Iglewski, B. H. (2007) Analysis of the hierarchy of quorum-sensing regulation in Pseudomonas aeruginosa. Anal Bioanal Chem 387, 469–79.PubMedCrossRefGoogle Scholar
  7. 7.
    Cabrol, S., Olliver, A., Pier, G. B., Andremont, A., and Ruimy, R. (2003) Transcription of quorum-sensing system genes in clinical and environmental isolates of Pseudomonas aeruginosa. J Bacteriol 185, 7222–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Favre-Bonte, S., Chamot, E., Kohler, T., Romand, J. A., and van Delden, C. (2007) Autoinducer production and quorum-sensing dependent phenotypes of Pseudomonas aeruginosa vary according to isolation site during colonization of intubated patients. BMC Microbiol 7, 33.PubMedCrossRefGoogle Scholar
  9. 9.
    Lee, B., Haagensen, J. A., Ciofu, O., Andersen, J. B., Hoiby, N., and Molin, S. (2005) Heterogeneity of biofilms formed by nonmucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. J Clin Microbiol 43, 5247–55.PubMedCrossRefGoogle Scholar
  10. 10.
    Schaber, J. A., Carty, N. L., McDonald, N. A., Graham, E. D., Cheluvappa, R., Griswold, J. A., and Hamood, A. N. (2004) Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 53, 841–53.PubMedCrossRefGoogle Scholar
  11. 11.
    Sandoz, K. M., Mitzimberg, S. M., and Schuster, M. (2007) Social cheating in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci U S A 104, 15876–81.PubMedCrossRefGoogle Scholar
  12. 12.
    Diggle, S. P., Griffin, A. S., Campbell, G. S., and West, S. A. (2007) Cooperation and conflict in quorum-sensing bacterial populations. Nature 450, 411–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Kaufmann, G. F., Sartorio, R., Lee, S. H., Rogers, C. J., Meijler, M. M., Moss, J. A., Clapham, B., Brogan, A. P., Dickerson, T. J., and Janda, K. D. (2005) Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-n-acylhomoserine lactones. Proc Natl Acad Sci U S A 102, 309–14.PubMedCrossRefGoogle Scholar
  14. 14.
    Royles, B. J. L. (1995) Naturally occurring tetramic acids: structure, isolation, and synthesis. Chem Rev 95, 1981–2001.CrossRefGoogle Scholar
  15. 15.
    Lowery, C. A., Park, J., Gloeckner, C., Meijler, M. M., Mueller, R. S., Boshoff, H. I., Ulrich, R. L., Barry, C. E., Bartlett, D. H., Kravchenko, V. V., Kaufmann, G. F., and Janda, K. D. (2009) Defining the mode of action of tetramic acid antibacterials derived from Pseudomonas aeruginosa quorum sensing signals. J Am Chem Soc 131 , 14473–79.Google Scholar
  16. 16.
    Davies, D. (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2, 114–22.PubMedCrossRefGoogle Scholar
  17. 17.
    Winstanley, C., and Fothergill, J. L. (2009) The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections. FEMS Microbiol Lett 290, 1–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Charlton, T. S., de Nys, R., Netting, A., Kumar, N., Hentzer, M., Givskov, M., and Kjelleberg, S. (2000) A novel and sensitive method for the quantification of n-3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. Environ Microbiol 2, 530–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Kirisits, M. J., and Parsek, M. R. (2006) Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities? Cell Microbiol 8, 1841–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Colin A. Lowery
    • 1
    • 2
  • Gunnar F. Kaufmann
    • 2
  • Kim D. Janda
    • 3
    • 2
    Email author
  1. 1.The Skaggs Institute for Chemical BiologyLa JollaUSA
  2. 2.Departments of Chemistry and Immunology & Microbial ScienceThe Scripps Research InstituteLa JollaUSA
  3. 3.Worm Institute for Research and Medicine (WIRM)The Skaggs Institute for Chemical BiologyLa JollaUSA

Personalised recommendations