Quorum Sensing pp 265-274 | Cite as

Custom Synthesis of Autoinducers and Their Analogues

  • Jun Igarashi
  • Hiroaki Suga
Part of the Methods in Molecular Biology book series (MIMB, volume 692)


Bacterial quorum sensing (QS) system is a unique target for the development of a new class of drugs that potentially control pathogenicity and attenuate virulence. Thus, it has been of significant interest to discover small organic molecules that modulate QS circuits by competing with the signaling molecules, or so-called autoinducers (AIs), for binding to QS proteins. In this chapter, we summarize synthetic methodology for custom QS agonists and antagonists against the Lux system in Gram-negative bacteria.

Key words

AHL combinatorial libraries QS agonists QS antagonists gfp-reporter strains 



This work was supported by Japan Science and Technology Innovative Technology Development Fund awarded to H.S. and Otsuka Chemical Corporation, Ltd.


  1. 1.
    Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL et al (2002). Structural identification of a bacterial quorum-sensing signal containing boron. Nature415, 545–549.PubMedCrossRefGoogle Scholar
  2. 2.
    Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH (1993). Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science,260, 1127–1130.PubMedCrossRefGoogle Scholar
  3. 3.
    Van Delden C, Iglewski B (1998). Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis,4, 1–13.CrossRefGoogle Scholar
  4. 4.
    Fuqua C, Greenberg EP (2002). Listening in on bacteria: acyl-homoserine lactone signaling. Nat Rev Mol Cell Biol,3, 685–695.PubMedCrossRefGoogle Scholar
  5. 5.
    Hilgers MT, Ludwig ML (2001). Crystal structure of the quorum-sensing protein LuxS reveals a catalytic metal site. Proc Natl Acad Sci U S A,98, 11169–11174.PubMedCrossRefGoogle Scholar
  6. 6.
    Ruzheinikov SN, Das SK, Sedelnikova SE, Hartley A, Foster SJ, Horsburgh MJ, Cox AG, McCleod CW, Mekhalfia A, Blackburn GM, Rice DW, Baker PJ (2001). The 1.2 A structure of a novel quorum-sensing protein, Bacillus subtilis LuxS. J Mol Biol,313, 111–122.PubMedCrossRefGoogle Scholar
  7. 7.
    Bottomley MJ, Muraglia E, Bazzo R, Carfì A (2007). Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. J Biol Chem,282, 18, 13592–13600.PubMedCrossRefGoogle Scholar
  8. 8.
    More MI, Finger DL, Stryker JL, Fuqua C, Eberhard A, Winans SC (1996). Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science,272, 1655–1658.PubMedCrossRefGoogle Scholar
  9. 9.
    Val DL, Cronan JE Jr (1998). In vivo evidence that Sadenosylmethionine and fatty acid synthesis intermediates are the substrates for the LuxI family of autoinducer synthases. J Bacteriol,180, 2644–2651.PubMedGoogle Scholar
  10. 10.
    Lithgow JK, Wilkinson A, Hardman A, Rodelas B, Wisniewski-Dye F, Williams P, Downie JA (2000). The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorumsensing loci. Mol Microbiol,37, 81–97.PubMedCrossRefGoogle Scholar
  11. 11.
    Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981). Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry,20, 2444–2449.PubMedCrossRefGoogle Scholar
  12. 12.
    Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, Greenberg EP (1994). Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A,91, 197–201.PubMedCrossRefGoogle Scholar
  13. 13.
    de Kievit TR, Iglewski BH (2000). Bacterial quorum sensing in pathogenic relationships. Infect Immun,68, 4839–4849PubMedCrossRefGoogle Scholar
  14. 14.
    Huber B, Riedel K, Köthe M, Givskov M, Molin S, Eberl L (2002). Genetic analysis of functions involved in the late stages of biofilm development in Burkholderia cepacia H111. Mol Microbiol,2, 411–426.CrossRefGoogle Scholar
  15. 15.
    Smith KM, Bu Y, Suga H (2003). Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem Biol,10, 81–89PubMedCrossRefGoogle Scholar
  16. 16.
    Smith KM, Bu Y, Suga H (2003). Library screening for synthetic agonists and antagonists of a Pseudomonas aeruginosa autoinducer. Chem Biol,10, 563–571.PubMedCrossRefGoogle Scholar
  17. 17.
    Jog GJ, Igarashi J, Suga H (2006). Stereoisomers of brief communication P. aeruginosa autoinducer analog to probe the regulator binding site. Chem Biol,13, 123–128.PubMedCrossRefGoogle Scholar
  18. 18.
    Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Köte M, Nielsen J, Eberl L, Givskov M (2005). Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol,187, 1799–1814.PubMedCrossRefGoogle Scholar
  19. 19.
    Müh U, Schuster M, Heim R, Singh A, Olson ER, Greenberg EP (2006). Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrob Agents Chemother,50, 3674–3679.PubMedCrossRefGoogle Scholar
  20. 20.
    Glansdorp FG, Thomas GL, Lee JJK, Dutton JM, Salmond GPC, Welch M, Spring DR.(2004). Synthesis and stability of small molecule probes for Pseudomonas aeruginosa quorum sensing modulation. Org Biomol Chem,2, 3329–3336.PubMedCrossRefGoogle Scholar
  21. 21.
    Castang S, Chantegrel B, Deshayes C, Dolmazon R, Gouet P, Haser R, Reverchon S, Nasser W, Hugouvieux-Cotte-Pattat N, Doutheau A (2004). N-Sulfonyl homoserine lactones as antagonists of bacterial quorum sensing. Bioorg Med Chem Lett,14, 5145–5149.PubMedCrossRefGoogle Scholar
  22. 22.
    Geske GD, Wezeman RJ, Siegel AP, Blackwell HE (2005). Small molecule inhibitors of bacterial quorum sensing and biofilm formation. J Am Chem Soc,127, 12762–12763.PubMedCrossRefGoogle Scholar
  23. 23.
    Geske GD, O’Neill JC, Miller DM, Mattmann ME, Blackwell HE (2007). Modulation of bacterial quorum sensing with synthetic ligands: systematic evaluation of N-acylated homoserine lactones in multiple species and new insights into their mechanisms of action. J Am Chem Soc,129, 13613–13625.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jun Igarashi
  • Hiroaki Suga
    • 1
  1. 1.Chemical Biology and Biotechnology Lab, Research Center for Advanced Science and Technology (RCAST)The University of TokyoTokyoJapan

Personalised recommendations