Advertisement

Quorum Sensing pp 189-206 | Cite as

Small RNA Target Genes and Regulatory Connections in the Vibrio cholerae Quorum Sensing System

  • Brian K. Hammer
  • Sine Lo Svenningsen
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 692)

Abstract

The two-component quorum sensing (QS) system, first described in the marine bacterium Vibrio harveyi and evolutionarily conserved among members of the genus Vibrio, has been best studied in the human pathogen Vibrio cholerae (1, 2). In the V. cholerae QS system, the response to the accumulation of extracellular autoinducers triggers a signaling cascade resulting in the transcription of four small regulatory RNAs (sRNAs). Our results support the model that the QS sRNAs bind to the 5′ untranslated region of multiple mRNAs and alter the fate of one in a positive manner and several others in a negative manner. This mechanism ensures the proper timing of the QS response, which includes the expression of traits critical for virulence and for the formation of biofilms (2–6).

Key words

Vibrio cholerae Small RNA mRNA Quorum sensing Virulence SOE GFP Northern blot Site-directed mutagenesis 

Notes

Acknowledgment

This material is based upon the work supported by the National Science Foundation under Grant No. 0919821. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References

  1. 1.
    Hammer, B. K., and Bassler, B. L. (2008) Signal integration in the Vibrio harveyi and Vibrio cholerae quorum sensing circuits, Washington, DC Stephen C Winans and Bonnie L. Bassler 323–332.Google Scholar
  2. 2.
    Lenz, D. H., Mok, K. C., Lilley, B. N., Kulkarni, R. V., Wingreen, N. S., and Bassler, B. L. (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae, Cell 118, 69–82.PubMedCrossRefGoogle Scholar
  3. 3.
    Miller, M. B., Skorupski, K., Lenz, D. H., Taylor, R. K., and Bassler, B. L. (2002) Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae, Cell 110, 303–314.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhu, J., Miller, M. B., Vance, R. E., Dziejman, M., Bassler, B. L., and Mekalanos, J. J. (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae, Proc Natl Acad Sci USA 99, 3129–3134.PubMedCrossRefGoogle Scholar
  5. 5.
    Svenningsen, S. L., Tu, K. C., and Bassler, B. L. (2009) Gene dosage compensation calibrates four regulatory RNAs to control Vibrio cholerae quorum sensing, EMBO J 28, 429–439.PubMedCrossRefGoogle Scholar
  6. 6.
    Hammer, B. K., and Bassler, B. L. (2009) Distinct sensory pathways in Vibrio cholerae El Tor and classical biotypes modulate cyclic dimeric GMP levels to control biofilm formation, J Bacteriol 191, 169–177.PubMedCrossRefGoogle Scholar
  7. 7.
    Hammer, B. K., and Bassler, B. L. (2003) Quorum sensing controls biofilm formation in Vibrio cholerae, Mol Microbiol 50, 101–104.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhu, J., and Mekalanos, J. J. (2003) Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae, Dev Cell 5, 647–656.PubMedCrossRefGoogle Scholar
  9. 9.
    Hammer, B. K., and Bassler, B. L. (2007) Regulatory small RNAs circumvent the conventional quorum sensing pathway in pandemic Vibrio cholerae, Proc Natl Acad Sci USA 104, 11145–11149.PubMedCrossRefGoogle Scholar
  10. 10.
    Dunn, A. K., Millikan, D. S., Adin, D. M., Bose, J. L., and Stabb, E. V. (2006) New rfp- and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ, Appl Environ Microbiol 72, 802–810.PubMedCrossRefGoogle Scholar
  11. 11.
    Dehio, C., and Meyer, M. (1997) Maintenance of broad-host-range incompatibility group P and group Q plasmids and transposition of Tn5 in Bartonella henselae following conjugal plasmid transfer from Escherichia coli, J Bacteriol 179, 538–540.PubMedGoogle Scholar
  12. 12.
    Vogel, J., and Wagner, E. G. (2007) Target identification of small noncoding RNAs in bacteria, Curr Opin Microbiol 10, 262–270.PubMedCrossRefGoogle Scholar
  13. 13.
    Aiba, H. (2007) Mechanism of RNA silencing by Hfq-binding small RNAs, Curr Opin Microbiol 10, 134–139.PubMedCrossRefGoogle Scholar
  14. 14.
    Tjaden, B. (2008) TargetRNA: a tool for predicting targets of small RNA action in bacteria, Nucleic Acids Res 36, W109–W113.PubMedCrossRefGoogle Scholar
  15. 15.
    Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K., and Pease, L. R. (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension, Gene 77, 61–68.PubMedCrossRefGoogle Scholar
  16. 16.
    Skorupski, K., and Taylor, R. K. (1996) Positive selection vectors for allelic exchange, Gene 169, 47–52.PubMedCrossRefGoogle Scholar
  17. 17.
    de Boer, H. A., Comstock, L. J., and Vasser, M. (1983) The tac promoter: a functional hybrid derived from the trp and lac promoters, Proc Natl Acad Sci USA 80, 21–25.PubMedCrossRefGoogle Scholar
  18. 18.
    Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res 31, 3406–3415.PubMedCrossRefGoogle Scholar
  19. 19.
    Rehmsmeier, M., Steffen, P., Hochsmann, M., and Giegerich, R. (2004) Fast and effective prediction of microRNA/target duplexes, RNA 10, 1507–1517.PubMedCrossRefGoogle Scholar
  20. 20.
    Schauder, S, Shokat, K., Surette, M. G., and Bassler, B.L. (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule, Mol Microbiol 41, 463–476.Google Scholar
  21. 21.
    Higgins, D. A., Pomianek, M. E., Kraml, C. M., Taylor, R. K., Semmelhack, M. F., and Bassler, B. L. (2007) The major Vibrio cholerae autoinducer and its role in virulence factor production, Nature 450, 883–886.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Brian K. Hammer
    • 1
  • Sine Lo Svenningsen
    • 2
  1. 1.School of BiologyGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Biomolecular Sciences Section, Institute of BiologyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations