Skip to main content

Analysis of Glycosaminoglycans in Stem Cell Glycomics

  • Protocol
  • First Online:
Embryonic Stem Cell Therapy for Osteo-Degenerative Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 690))

Abstract

Glycosaminoglycans (GAGs) play a critical role in the binding and activation of growth factors in cell signal transduction required for biological development. A glycomics approach can be used to examine GAG content, composition, and structure in stem cells in order to characterize their general differentiation. Specifically, this method may be used to evaluate chondrogenic differentiations by profiling for the GAG content of the differentiated cells. Here, embryonic-like teratocarcinoma cells, NCCIT, a developmentally pluripotent cell line, were used as a model for establishing GAG glycomic methods, but will be easily transferrable to embryonic stem cell cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raman, R., Raguram, S., Venkataraman, G., Paulson, J. C., and Sasisekharan, R. (2005) Glycomics: an integrated systems approach to structure-function relationships of glycans. Nat. Methods 2, 817–824.

    Article  PubMed  CAS  Google Scholar 

  2. Zhang, F., Zhang, Z., Thistle, R., McKeen, L., Hosoyama, S., Toida, T., et al. (2009) Structural characterization of glycosaminoglycans from zebrafish in different ages. Glycoconj. J. 26, 211–218.

    Article  PubMed  Google Scholar 

  3. Park, Y., Yu, G., Gunay, N. S., and Linhardt, R. J. (1999) Purification and characterization of heparan sulphate proteoglycan from bovine brain. Biochem. J. 344(Pt 3), 723–730.

    Article  PubMed  CAS  Google Scholar 

  4. Warda, M., Toida, T., Zhang, F., Sun, P., Munoz, E., Xie, J., et al. (2006) Isolation and characterization of heparan sulfate from various murine tissues. Glycoconj. J. 23, 555–563.

    Article  PubMed  CAS  Google Scholar 

  5. Nairn, A. V., Kinoshita-Toyoda, A., Toyoda, H., Xie, J., Harris, K., Dalton, S., et al. (2007) Glycomics of proteoglycan biosynthesis in murine embryonic stem cell differentiation. J. Proteome Res. 6, 4374–4387.

    Article  PubMed  CAS  Google Scholar 

  6. Linhardt, R. J., and Toida, T. (2004) Role of glycosaminoglycans in cellular communication. Acc. Chem. Res. 37, 431–438.

    Article  PubMed  CAS  Google Scholar 

  7. Linhardt, R. J. (2003) 2003 Claude S. Hudson Award address in carbohydrate chemistry. Heparin: structure and activity. J. Med. Chem. 46, 2551–2564.

    Article  PubMed  CAS  Google Scholar 

  8. Johnson, Z., Proudfoot, A. E., and Handel, T. M. (2005) Interaction of chemokines and glycosaminoglycans: a new twist in the regulation of chemokine function with opportunities for therapeutic intervention. Cytokine Growth Factor Rev. 16, 625–636.

    Article  PubMed  CAS  Google Scholar 

  9. Capila, I., and Linhardt, R. J. (2002) Heparin-protein interactions. Angew. Chem. Int. Ed. Engl. 41, 390–412.

    Article  CAS  Google Scholar 

  10. Beenken, A., and Mohammadi, M. (2009) The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov. 8, 235–253.

    Article  PubMed  CAS  Google Scholar 

  11. Hoffman, L. M., and Carpenter, M. K. (2005) Characterization and culture of human embryonic stem cells. Nat. Biotechnol. 23, 699–708.

    Article  PubMed  CAS  Google Scholar 

  12. Giacomini, M., Baylis, F., and Robert, J. (2007) Banking on it: public policy and the ethics of stem cell research and development. Soc. Sci. Med. 65, 1490–1500.

    Article  PubMed  Google Scholar 

  13. Uygun, B. E., Stojsih, S., and Matthew, H. (2009) Effects of immobilized glycosaminoglycans influence proliferation and differentiation of mesenchymal stem cells. Tissue Eng. Part A 15(11), 3499–3512.

    Article  PubMed  CAS  Google Scholar 

  14. Kumarasuriyar, A., Murali, S., Nurcombe, V., and Cool, S. M. (2009) Glycosaminoglycan composition changes with MG-63 osteosarcoma osteogenesis in vitro and induces human mesenchymal stem cell aggregation. J. Cell Physiol. 218, 501–511.

    Article  PubMed  CAS  Google Scholar 

  15. Dombrowski, C., Song, S. J., Chuan, P., Lim, X., Susanto, E., Sawyer, A. A., et al. (2009) Heparan sulfate mediates the proliferation and differentiation of rat mesenchymal stem cells. Stem Cells Dev. 18, 661–670.

    Article  PubMed  CAS  Google Scholar 

  16. Carney, S. L., and Muir, H. (1988) The structure and function of cartilage proteoglycans. Physiol. Rev. 68, 858–909.

    PubMed  CAS  Google Scholar 

  17. Poole, A. R. (1986) Proteoglycans in health and disease: structures and functions. Biochem. J. 236, 1–14.

    PubMed  CAS  Google Scholar 

  18. Bayliss, M. T., Osborne, D., Woodhouse, S., and Davidson, C. (1999) Sulfation of chondroitin sulfate in human articular cartilage. The effect of age, topographical position, and zone of cartilage on tissue composition. J. Biol. Chem. 274(22), 15892–15900.

    Article  PubMed  CAS  Google Scholar 

  19. Rizkalla, G., Reigner, A., Bogoch, E., and Poole, A. R. (1992) Studies of the articular cartilage proteoglycan aggrecan in health and osteoarthritis. Evidence for molecular heterogeneity and extensive molecular changes in disease. J. Clin. Invest. 90, 2268–2277.

    Article  PubMed  CAS  Google Scholar 

  20. Plaas, A. H., Wong-Palms, S., Roughley, P. J. Midura, R. J., and Hascall, V. C. (1997) Chemical and immunological assay of the nonreducing terminal residues of chondroitin sulfate from human aggrecan. J. Biol. Chem. 272, 20604–20610.

    Article  Google Scholar 

  21. Hitchcock, A. M., Yates, K. E., Shortkroff, S., Costello, C. E., and Zaia, J. (2007) Optimized extraction of glycosaminoglycans from normal and osteoarthritic cartilage for glycomics profiling. Glycobiology 17(1), 25–35.

    Article  PubMed  CAS  Google Scholar 

  22. Pervin, A., Gallo, C., Jandik, K. A., Han, X.-J., and Linhardt, R. J. (1995) Preparation and structural characterization of large heparin-derived oligosaccharides. Glycobiology 5, 83–95.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang, F., Sun, P., Munoz, E., Chi, L., Sakai, S., Toida, T., et al. (2006) Microscale isolation and analysis of heparin from plasma using an anion-exchange spin column. Anal. Biochem. 353, 284–286.

    Article  PubMed  CAS  Google Scholar 

  24. Edens, R. E., Al-Hakim, A., Weiler, J. M., Rethwisch, D. G., Fareed, J., and Linhardt, R. J. (1992) Gradient polyacrylamide gel electrophoresis for determination of the molecular weights of heparin preparations and low-molecular-weight heparin derivatives, J. Pharm. Sci. 81, 823–827.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang, Z., Park, Y., Kemp, M. M., Zhao, W., Im, A. R., Shaya, D., et al. (2009) Liquid chromatography-mass spectrometry to study chondroitin lyase action pattern. Anal. Biochem. 385, 57–64.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang, Z., Xie, J., Liu, H., Liu, J., and Linhardt, R. J. (2009) Quantification of heparan sulfate disaccharides using ion-pairing reversed-phase microflow high-performance liquid chromatography with electrospray ionization trap mass spectrometry. Anal. Chem. 81, 4349–4355.

    Article  PubMed  CAS  Google Scholar 

  27. Teshima, S., Shimosato, Y., Hirohashi, S., Tome, Y., Hayashi, I., Kanazawa, H., Kakizoe, T. (1988) Four new human germ cell tumor cell lines. Lab Invest. 59, 328–336.

    Google Scholar 

  28. Damjanov, I., Horvat, B., Gibas, Z. (1993) Retinoic acid-induced differentiation of the developmentally pluripotent human germ cell tumor-derived cell line, NCCIT. Lab Invest. 68, 220–232.

    Google Scholar 

Download references

Acknowledgment

Our laboratory acknowledges generous support from the New York State Department of Health and the Empire State Stem Cell Board in the form of grant number N08G-264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Linhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Li, B., Liu, H., Zhang, Z., Stansfield, H.E., Dordick, J.S., Linhardt, R.J. (2011). Analysis of Glycosaminoglycans in Stem Cell Glycomics. In: Nieden, N. (eds) Embryonic Stem Cell Therapy for Osteo-Degenerative Diseases. Methods in Molecular Biology, vol 690. Humana Press. https://doi.org/10.1007/978-1-60761-962-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-962-8_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-961-1

  • Online ISBN: 978-1-60761-962-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics