Skip to main content

Absorption-Based Assays for the Analysis of Osteogenic and Chondrogenic Yield

  • Protocol
  • First Online:
Embryonic Stem Cell Therapy for Osteo-Degenerative Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 690))

Abstract

The typical characteristics of cartilage and bone tissue are their unique extracellular matrices on which our body relies for structural support. In the respective tissue, the cells that create these matrices are the chondrocyte and the osteoblast. During in vitro differentiation from an embryonic or any other stem cell, specific cell types must be unequivocally identifiable to be able to draw the conclusion that a specific cell type has indeed been generated. Here, gene expression profiling can be helpful, but examining functional properties of cells is a lot more conclusive. As proteoglycans are found in and are part of the function of cartilage tissue, their detection and quantification becomes an important diagnostic tool in tissue engineering. Likewise, in bone regeneration therapy and in research, alkaline phosphatase is a known marker to detect the degree of development and function of differentiating osteoblasts. Calcification of the maturing osteoblast is the last stage in its development, and thus, the quantification of deposited calcium can aid in determining how many cells in a given culture have successfully matured into fully functioning osteoblasts. This chapter describes methods ideal for testing of proteoglycan content, alkaline phosphatase activity, and calcium deposit during in vitro chondro- and osteogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boskey, A.L. (2001) Bone mineralization. In: Cowin, S.C., editor. Bone Biomechanics. 3. CRC Press; Boca Raton, FL, pp. 5.1–5.34.

    Google Scholar 

  2. Doege, K.J., Sasaki, M., Kimura, T., and Yamada, Y. (1991) Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan. Human-specific repeats, and additional alternatively spliced forms. J. Biol. Chem. 266, 894–902.

    PubMed  CAS  Google Scholar 

  3. zur Nieden, N.I., Kempka, G., Rancourt, D.E., and Ahr, H.J. (2005) Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev. Biol. 5, 1.

    Article  PubMed  Google Scholar 

  4. Hocking, A.M., Shinomura, T., and McQuillan, D.J. (1998) Leucine-rich repeat glycoproteins of the extracellular matrix. Matrix Biol. 17, 1–19.

    Article  PubMed  CAS  Google Scholar 

  5. Fisher, L.W., Termine, J.D., and Young, M.F. (1989) Deduced protein sequence of bone small proteoglycan I (biglycan) shows homology with proteoglycan II (decorin) and several nonconnective tissue proteins in a variety of species. J. Biol. Chem. 264, 4571–4576.

    PubMed  CAS  Google Scholar 

  6. Bianco, P., Fisher, L.W., Young, M.F., Termine, J.D., and Robey, P.G. (1990) Expression and localization of the two small proteoglycans biglycan and decorin in developing human skeletal and non-skeletal tissues. J. Histochem. Cytochem. 38, 1549–1563.

    Article  PubMed  CAS  Google Scholar 

  7. Waddington, R.J., and Embery, G. (1991) Structural characterization of human alveolar bone proteoglycans. Arch. Oral. Biol. 36, 859–866.

    Article  PubMed  CAS  Google Scholar 

  8. Roughley, P.J., White, R.J., Magny, M.C., Liu, J., Pearce, R.H., and Mort, J.S. (1993) Non-proteoglycan forms of biglycan increase with age in human articular cartilage. Biochem. J. 295, 421–426.

    PubMed  CAS  Google Scholar 

  9. Vogel, K.G., Paulsson, M., and Heinegård, D. (1984) Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem. J. 223, 587–597.

    PubMed  CAS  Google Scholar 

  10. Roughley, P.J. (2006) The structure and function of cartilage proteoglycans. Eur. Cell Mater. 12, 92–101.

    PubMed  CAS  Google Scholar 

  11. Waddington, R.J., Roberts, H.C., Sugars, R.V., and Schönherr, E. (2003) Differential roles for small leucine-rich proteoglycans in bone formation. Eur. Cell Mater. 6, 12–21.

    PubMed  CAS  Google Scholar 

  12. zur Nieden, N.I., Price, F.D., Davis, L.A., Everitt, R.E., and Rancourt, D.E. (2007) Gene profiling on mixed embryonic stem cell populations reveals a biphasic role for beta-catenin in osteogenic differentiation. Mol. Endocrinol. 21, 674–685.

    Article  PubMed  Google Scholar 

  13. zur Nieden, N.I., Kempka, G., and Ahr, H.J. (2003) In vitro differentiation of embryonic stem cells into mineralized osteoblasts. Differentiation 71, 18–27.

    Article  PubMed  Google Scholar 

  14. Buttery, L.D., Bourne, S., Xynos, J.D., Wood, H., Hughes, F.J., Hughes, S.P., et al. (2001) Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. Tissue Eng. 7, 89–99.

    Article  PubMed  CAS  Google Scholar 

  15. Sottile, V., Thomson, A., and McWhir, J. (2003) In vitro osteogenic differentiation of human ES cells. Cloning Stem Cells 5, 149–155.

    Article  PubMed  CAS  Google Scholar 

  16. Giocondi, M.C., Seantier, B., Dosset, P., Milhiet, P.E., and Le Grimellec, C. (2008) Characterizing the interactions between GPI-anchored alkaline phosphatases and membrane domains by AFM. Pflugers Arch. 456, 179–188.

    Article  PubMed  CAS  Google Scholar 

  17. Millan, J.L. (2006) Alkaline phosphatases: structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal. 2, 335–341.

    Article  PubMed  CAS  Google Scholar 

  18. Berg, P.E. (1981) Cloning and characterization of the Escherichia coli gene coding for alkaline phosphatase. J. Bacteriol. 146, 660–667.

    PubMed  CAS  Google Scholar 

  19. Kam, W., Clauser, E., Kim, Y.S., Kan, Y.W., and Rutter, W.J. (1985) Cloning, sequencing, and chromosomal localization of human term placental alkaline phosphatase cDNA. Proc. Natl. Acad. Sci. U.S.A. 82, 8715–8719.

    Article  PubMed  CAS  Google Scholar 

  20. Beacham, I.R., Taylor, N.S., and Youell, M. (1976) Enzyme secretion in Escherichia coli: synthesis of alkaline phosphatase and acid hexose phosphatase in the absence of phospholipid synthesis. J. Bacteriol. 128, 522–527.

    PubMed  CAS  Google Scholar 

  21. Davis, L.A., and zur Nieden, N.I. (2008) Mesodermal fate decisions of a stem cell: the Wnt switch. Cell. Mol. Life Sci. 65, 2658–2674.

    Article  PubMed  CAS  Google Scholar 

  22. Karp, J.M., Ferreira, L.S., Khademhosseini, A., Kwon, A.H., Yeh, J., and Langer, R.S. (2006) Cultivation of human embryonic stem cells without the embryoid body step enhances osteogenesis in vitro. Stem Cells 24, 835–843.

    Article  PubMed  Google Scholar 

  23. Berstine, E.G., Hooper, M.L., Grandchamp, S., and Ephrussi, B. (1973) Alkaline phosphatase activity in mouse teratoma. Proc. Natl. Acad. Sci. U.S.A. 70, 3899–3903.

    Article  PubMed  CAS  Google Scholar 

  24. Nicolas, J.F., Avner, P., Gaillard, J., Guenet, J.L., Jakob, H., and Jacob, F. (1976) Cell lines derived from teratocarcinomas. Cancer Res. 36, 4224–4231.

    PubMed  CAS  Google Scholar 

  25. Resnick, J.L., Bixler, L.S., Cheng, L., and Donovan, P.J. (1992) Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550–551.

    Article  PubMed  CAS  Google Scholar 

  26. Iannaccone, P.M., Taborn, G.U., Garton, R.L., Caplice, M.D., and Brenin, D.R. (1994) Pluripotent embryonic stem cells from the rat are capable of producing chimeras. Dev. Biol. 163, 288–292.

    Article  PubMed  CAS  Google Scholar 

  27. Pease, S., Braghetta, P., Gearing, D., Grail, D., and Williams, R.L. (1990) Isolation of embryonic stem (ES) cells in media supplemented with recombinant leukemia inhibitory factor (LIF). Dev. Biol. 141, 344–352.

    Article  PubMed  CAS  Google Scholar 

  28. Zayzafoon, M. (2006) Calcium/calmodulin signaling controls osteoblast growth and differentiation. J. Cell. Biochem. 97, 56–70.

    Article  PubMed  CAS  Google Scholar 

  29. Christenson, R.H. (1997) Biochemical markers of bone metabolism: an overview. Clin. Biochem. 30, 573–593.

    Article  PubMed  CAS  Google Scholar 

  30. Brown, E.M., Chattopadhyay, N., and Yano, S. (2004) Calcium-sensing receptors in bone cells. J. Musculoskelet. Neuronal. Interact. 4, 412–413.

    PubMed  CAS  Google Scholar 

  31. Jung, S.Y., Park, Y.J., Cha, S.H., Lee, M.Z., and Suh, C.K. (2007) Na+-Ca2+ exchanger modulates Ca2+ content in intracellular Ca2+ stores in rat osteoblasts. Exp. Mol. Med. 39, 458–468.

    PubMed  CAS  Google Scholar 

  32. Stains, J.P., Weber, J.A., and Gay, C.V. (2002) Expression of Na(+)/Ca(2+) exchanger isoforms (NCX1 and NCX3) and plasma membrane Ca(2+) ATPase during osteoblast differentiation. J. Cell. Biochem. 84, 625–635.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole I. zur Nieden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Davis, L.A., Dienelt, A., Nieden, N.I.z. (2011). Absorption-Based Assays for the Analysis of Osteogenic and Chondrogenic Yield. In: Nieden, N. (eds) Embryonic Stem Cell Therapy for Osteo-Degenerative Diseases. Methods in Molecular Biology, vol 690. Humana Press. https://doi.org/10.1007/978-1-60761-962-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-962-8_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-961-1

  • Online ISBN: 978-1-60761-962-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics