Skip to main content

Automated Imaging of Avoidance Behavior in Larval Zebrafish

  • Protocol
  • First Online:
Book cover Zebrafish Neurobehavioral Protocols

Part of the book series: Neuromethods ((NM,volume 51))

Abstract

This protocol describes the construction of an automated imaging system and two assays for measuring avoidance behaviors in larval zebrafish. The first assay, called the “bouncing ball assay,” measures the response of larvae to a threatening stimulus displayed on an LCD screen. The second assay, called the “two-fish assay,” measures avoidance behavior of two siblings in a multiwell plate. The assays are robust and can easily be adapted for medium- to high-throughput applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barros, T.P., Alderton, W.K., Reynolds, H.M., Roach, A.G., & Berghmans, S. Zebrafish: an emerging technology for in vivo pharmacological assessment to identify potential safety liabilities in early drug discovery. Br. J. Pharmacol. 154, 1400–1413 (2008).

    Article  PubMed  CAS  Google Scholar 

  2. Brockerhoff, S.E. Measuring the optokinetic response of zebrafish larvae. Nat. Protoc. 1, 2448–2451 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. Fleisch, V.C. & Neuhauss, S.C. Visual behavior in zebrafish. Zebrafish 3, 191–201 (2006).

    Article  PubMed  Google Scholar 

  4. Flinn, L., Bretaud, S., Lo, C., Ingham, P.W., & Bandmann, O. Zebrafish as a new animal model for movement disorders. J. Neurochem. 106, 1991–1997 (2008).

    Article  PubMed  CAS  Google Scholar 

  5. Westerfield, M. THE ZEBRAFISH BOOK; A guide for the laboratory use of zebrafish (Danio rerio). 5th Edition (Eugene, University of Oregon Press, 2007).

    Google Scholar 

  6. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., & Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. Berghmans, S., Hunt, J., Roach, A., & Goldsmith, P. Zebrafish offer the potential for a primary screen to identify a wide variety of potential anticonvulsants. Epilepsy Res. 75, 18–28 (2007).

    Article  PubMed  CAS  Google Scholar 

  8. Emran, F., et al. OFF ganglion cells cannot drive the optokinetic reflex in zebrafish. Proc. Natl. Acad. Sci. U. S. A. 104, 19126–19131 (2007).

    Article  PubMed  CAS  Google Scholar 

  9. Emran, F., Rihel, J., & Dowling, J.E. A behavioral assay to measure responsiveness of zebrafish to changes in light intensities. J. Vis. Exp. 20, 923 (2008).

    Google Scholar 

  10. Prober, D.A., Rihel, J., Onah, A.A., Sung, R.J., & Schier, A.F. Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J. Neurosci. 26, 13400–13410 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. Creton, R. Automated analysis of behavior in zebrafish larvae. Behav. Brain Res. 203, 127–136 (2009).

    Article  PubMed  Google Scholar 

  12. Sprague, J., et al. The zebrafish information network: the zebrafish model organism database provides expanded support for genotypes and phenotypes. Nucleic Acids. Res. 36, D768–D772 (2008).

    Article  PubMed  CAS  Google Scholar 

  13. Kessler, R.C., Chiu, W.T., Demler, O., Merikangas, K.R., & Walters, E.E. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the national comorbidity survey replication. Arch. Gen. Psychiatry 62, 617–627 (2005).

    Article  PubMed  Google Scholar 

  14. McLaughlin, K.A., Behar, E., & Borkovec, T.D. Family history of psychological problems in generalized anxiety disorder. J. Clin. Psychol. 64, 905–918 (2008).

    Article  PubMed  Google Scholar 

  15. Smoller, J.W., Gardner-Schuster, E., & Covino, J. The genetic basis of panic and phobic anxiety disorders. Am. J. Med. Genet. C Semin. Med. Genet. 148C, 118–126 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Elena Carver, Emily Cole, Farrah Laliberte, and Charles Kambe for their help in testing the imaging system and image analysis protocols.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Colwill, R.M., Creton, R. (2011). Automated Imaging of Avoidance Behavior in Larval Zebrafish. In: Kalueff, A., Cachat, J. (eds) Zebrafish Neurobehavioral Protocols. Neuromethods, vol 51. Humana Press. https://doi.org/10.1007/978-1-60761-953-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-953-6_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-952-9

  • Online ISBN: 978-1-60761-953-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics