Skip to main content

Intraperitoneal Injection as a Method of Psychotropic Drug Delivery in Adult Zebrafish

  • Protocol
  • First Online:
Book cover Zebrafish Neurobehavioral Protocols

Abstract

Zebrafish behavioral phenotypes are often evaluated in response to pharmacological modulation by various psychotropic drugs. An important step in this process is the method of drug administration. While the most popular drug administration technique in zebrafish research is by immersion, systemic intraperitoneal injection is another effective alternative. This method is useful for drugs that are difficult to dissolve in water, or which require a better control over the amount of drug delivered to an individual animal. Here we outline a simple protocol for the intraperitoneal injection of drugs in adult zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong, K. et al. Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav. Brain Res. 208(2), 450–457 (2010).

    Article  PubMed  CAS  Google Scholar 

  2. Egan, R.J. et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav. Brain Res. 205(1), 38–44 (2009).

    Article  PubMed  CAS  Google Scholar 

  3. Bencan, Z., Sledge, D., & Levin, E.D. Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacol. Biochem. Behav. 94(1), 75–80 (2009).

    Article  PubMed  CAS  Google Scholar 

  4. Levin, E.D., Bencan, Z., & Cerutti, D.T. Anxiolytic effects of nicotine in zebrafish. Physiol. Behav. 90(1), 54–58(2007).

    Article  PubMed  CAS  Google Scholar 

  5. Cachat, J. et al. Modeling withdrawal syndrome in zebrafish. Behav. Brain Res. 205, 38–44 (2009).

    Google Scholar 

  6. Grossman, L. et al. Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav. Brain Res. 214(2), 277–284 (2010).

    Google Scholar 

  7. Wong, K. et al. Modeling seizure-related behavioral and endocrine phenotypes in adult zebrafish. Brain Res. 1348, 209–215 (2010).

    Google Scholar 

  8. Klaassen, C.D. (2001) Casarett & Doull’s Toxicology – The Basic Science of Poisons (6th Edition). McGraw-Hill, New York.

    Google Scholar 

  9. March, T.H. et al. Inhalation administration of all-trans-retinoic acid for treatment of elastase-induced pulmonary emphysema in Fischer 344 rats. Exp. Lung Res. 30(5), 383–404 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. Muneoka, K. et al. Prenatal nicotine exposure affects the development of the central serotonergic system as well as the dopaminergic system in rat offspring: involvement of route of drug administrations. Brain Res. Dev. Brain Res. 102(1), 117–126 (1997).

    Article  PubMed  CAS  Google Scholar 

  11. Gerlai, R., Lee, V., & Blaser, R. Effects of acute and chronic ethanol exposure on the behavior of adult zebrafish (Danio rerio). Pharmacol. Biochem. Behav. 85(4), 752–761 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. Sackerman, J. et al. Zebrafish behavior in novel environments: effects of acute exposure to anxiolytic compounds and choice of Danio rerio line. Inter. J. Compar. Psychol. 23(1), 43–61 (2010).

    Google Scholar 

  13. Kato, Y., Onishi, H., & Machida, Y. N-succinyl-chitosan as a drug carrier: water-insoluble and water-soluble conjugates. Biomaterials 25(5), 907–915 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. Tiersch, T.R. & Griffith, J.S. Apomorphine-induced vomiting in rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. A Comp. Physiol. 91(4), 721–725 (1988).

    Article  PubMed  CAS  Google Scholar 

  15. Samuelsen, O.B. & Ervik, A. Single dose pharrnacokinetic study of flumequine after intravenous, intraperitoneal and oral administration to Atlantic halibut (Hippoglossus hippoglossus) held in seawater at 9°C. Aquaculture 158, 215–227 (1997).

    Article  Google Scholar 

  16. Tagliari, K.C. et al. Oxidative stress damage in the liver of fish and rats receiving an intraperitoneal injection of hexavalent chromium as evaluated by chemiluminescence. Env. Toxic. Pharm. 17(3), 149–157 (2004).

    Article  CAS  Google Scholar 

  17. Zhang, X. et al. Hematological and plasma biochemical responses of crucian carp (Carassius auratus) to intraperitoneal injection of extracted microcystins with the possible mechanisms of anemia. Toxicon 49(8), 1150–1157 (2007).

    Article  PubMed  CAS  Google Scholar 

  18. Pollard, H.B., et al. A parkinsonian syndrome induced in the goldfish by the neurotoxin MPTP. FASEB J. 6(12), 3108–3116 (1992).

    PubMed  CAS  Google Scholar 

  19. Mennigen, J.A. et al. Effects of fluoxetine on the reproductive axis of female goldfish (Carassius auratus). Physiol. Genomics 35(3), 273–282 (2008).

    Article  PubMed  CAS  Google Scholar 

  20. Lushchak, V.I. et al. Diethyldithiocarbamate injection induces transient oxidative stress in goldfish tissues. Chem. Biol. Interact. 170(1), 1–8 (2007).

    Article  PubMed  CAS  Google Scholar 

  21. Hibbert, B. et al. Catecholamine depletion modulates serum LH levels, GAD67 mRNA, and GABA synthesis in the goldfish. Gen. Comp. Endocrinol. 140(3), 176–183 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. Garina, D.V., Kuz’mina, V.V., & Gerasimov, Y.V. The effect of epinephrine on feeding and motion patterns in goldfish Carassius auratus (L.). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 148(3), 544–549 (2007).

    Article  PubMed  CAS  Google Scholar 

  23. Al-Hussinee, L. et al. Viral haemorrhagic septicaemia virus IVb experimental infection of rainbow trout, Oncorhynchus mykiss (Walbaum), and fathead minnow, Pimphales promelas (Rafinesque). J. Fish Dis. 33(4), 347–360 (2010).

    Article  PubMed  CAS  Google Scholar 

  24. Grove, D.J. The effects of adrenergic drugs on melanophores of the minnow, Phoxinus phoxinus (L.). Comp. Biochem. Physiol. 28(1), 37–54 (1969).

    Article  PubMed  CAS  Google Scholar 

  25. Winter, M.J., Ellis, L.C., & Hutchinson, T.H. Formation of micronuclei in erythrocytes of the fathead minnow (Pimephales promelas) after acute treatment with mitomycin C or cyclophosphamide. Mutat. Res. 629(2), 89–99 (2007).

    PubMed  CAS  Google Scholar 

  26. Chettri, J.K. et al. Protective immunization against Tetrahymena sp. infection in guppies (Poecilia reticulate). Fish Shellfish. Immunol. 27(2), 302–308 (2009).

    Article  PubMed  CAS  Google Scholar 

  27. Takahashi, Y. & Kawahara, E. Maternal immunity in newborn fry of the ovoviparous guppy. Nippon Suisan. Gakkaishi. 53(5), 721–725 (1987).

    Article  Google Scholar 

  28. Leibowitz, M.P. et al. Cysteine proteases and acid phosphatases contribute to Tetrahymena spp. pathogenicity in guppies. Poecilia reticulata. Vet Parasitol. 166(1–2), 21–26 (2009).

    Article  CAS  Google Scholar 

  29. Bretaud, S., Lee, S., & Guo, S. Sensitivity of zebrafish to environmental toxins implicated in Parkinson’s disease. Neurotoxicol. Teratol. 26(6), 857–864 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. Uren-Webster, T.M. et al. Mechanisms of toxicity of di(2-ethylhexyl) phthalate on the reproductive health of male zebrafish. Aquat. Toxicol. 99(3), 360–369 (2010).

    Google Scholar 

  31. Liu, Y. et al. Induction of time-dependent oxidative stress and related transcriptional effects of perfluorododecanoic acid in zebrafish liver. Aquat. Toxicol. 89(4), 242–250 (2008).

    Article  PubMed  CAS  Google Scholar 

  32. Yin, N. et al. Effects of adrenergic agents on the expression of zebrafish (Danio rerio) vitellogenin Ao1. Toxicol. Appl. Pharmacol. 238(1), 20–26 (2009).

    Article  PubMed  CAS  Google Scholar 

  33. Ninkovic, J. & Bally-Cuif, L. The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods 39(3), 262–274 (2006).

    Article  PubMed  CAS  Google Scholar 

  34. Hatefi, A. & Amsden, B. Biodegradable injectable in situ forming drug delivery systems. J. Control Release 80(1–3), 9–28 (2002).

    Article  PubMed  CAS  Google Scholar 

  35. de Bree, E. et al. Treatment of ovarian cancer using intraperitoneal chemotherapy with taxanes: from laboratory bench to bedside. Cancer Treat. Rev. 32(6), 471–482 (2006).

    Article  PubMed  Google Scholar 

  36. Wang, H.Y. et al. Localization and analyses of small drug molecules in rat brain tissue sections. Anal. Chem. 77(20), 6682–6686 (2005).

    Article  PubMed  CAS  Google Scholar 

  37. Toth, K. et al. Effects of intraamygdaloid microinjections of acylated-ghrelin on liquid food intake of rats. Brain Res. Bull. 77(2–3), 105–111 (2008).

    Article  PubMed  CAS  Google Scholar 

  38. DeTolla, L.J., et al. Guidelines for the care and use of fish in research. ILAR J. 37(4), 159–173 (1995).

    PubMed  Google Scholar 

  39. Lopatin, P.V. et al. Use of nonaqueous solvents to prepare injection solutions. Khimiko-Farmatsevticheskii Zhurnal. 6(11), 36–47 (1973).

    Google Scholar 

  40. IACUC, Anesthesia, Analgesia and Euthanasia Guide, U.O.o. Research, 1995.

    Google Scholar 

  41. NIH, NIH Anesthesia/Analgesia Formulary. 2005.

    Google Scholar 

  42. Ayllon, F. & Garcia-Vazquez, E. Induction of micronuclei and other nuclear abnormalities in European minnow Phoxinus phoxinus and mollie Poecilia latipinna: an assessment of the fish micronucleus test. Mutat. Res. 467(2), 177–186 (2000).

    PubMed  CAS  Google Scholar 

  43. Westerfield, M. (ed.) The zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio) (University of Oregon Press, Eugene, 2000).

    Google Scholar 

  44. Frisen, L. Reliability of intraperitoneal injections in fish. Experientia 23(10), 883–884 (1967).

    Article  PubMed  CAS  Google Scholar 

  45. Swaim, L.E. et al. Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infect. Immun. 74(11), 6108–6117 (2006).

    Article  PubMed  CAS  Google Scholar 

  46. Neely, M.N., Pfeifer, J.D., & Caparon, M. Streptococcus-zebrafish model of bacterial pathogenesis. Infect. Immun. 70(7), 3904–3914 (2002).

    Article  PubMed  CAS  Google Scholar 

  47. Lien, C.L. et al. Gene expression analysis of zebrafish heart regeneration. PLoS Biol. 4(8), e260 (2006).

    Article  PubMed  Google Scholar 

  48. Novoa, A. et al. Zebrafish (Danio rerio) as a model for the study of vaccination against viral haemorrhagic septicemia virus (VHSV.) Vaccine 24(31–32), 5806–5816 (2006).

    Article  PubMed  CAS  Google Scholar 

  49. Moss, J.B. et al. Regeneration of the pancreas in adult zebrafish. Diabetes 58(8), 1844–1851 (2009).

    Article  PubMed  CAS  Google Scholar 

  50. Pugach, E.K., et al. Retro-orbital injection in adult zebrafish. J. Vis. Exp. 12(34), 1–2 (2009).

    PubMed  Google Scholar 

  51. Braida, D. et al. Hallucinatory and rewarding effect of salvinorin A in zebrafish: kappa-opioid and CB1-cannabinoid receptor involvement. Psychopharmacology (Berlin) 190(4), 441–448 (2007).

    Article  CAS  Google Scholar 

  52. Levina, S. & Gordon, R. Methionine enkephalin-induced changes in pigmentation of zebrafish (Cyprinidae, Brachydanio rerio) and related species and varieties, measured videodensitometrically. I. Zebrafish. Gen. Comp. Endocrinol. 51(3), 370–377 (1983).

    Article  PubMed  CAS  Google Scholar 

  53. Anichtchik, O.V., et al. Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J. Neurochem. 88(2), 443–453 (2004).

    Article  PubMed  CAS  Google Scholar 

  54. Lord, A.M., North, T.E., & Zon, L.I. Prostaglandin E2: making more of your marrow. Cell Cycle 6(24), 3054–3057 (2007).

    Article  PubMed  CAS  Google Scholar 

  55. Lee, S.J. et al. LPA1 is essential for lymphatic vessel development in zebrafish. FASEB J. 22(10), 3706–3715 (2008).

    Article  PubMed  CAS  Google Scholar 

  56. Hornberg, T.E. Experimental methods for pharmacokinetic studies in salmonids. Ann. Rev. Fish Diseases 4, 345–358 (1994).

    Google Scholar 

  57. Green, M.D. & Lomax, P. Behavioral thermoregulation and neuroamines in fish (Chromus chromus). J. Thermal Biol. 1(4), 237–240 (1976).

    Article  CAS  Google Scholar 

  58. Sutphin, Z.A., Myrick, C.A., & Brandt, M.M. Swimming performance of sacramento splittail injected with subcutaneous marking agents. N. Amer. J. Fisheries Manage. 27, 1378–1382 (2007).

    Article  Google Scholar 

  59. Thompson, E.R. et al. Induction of bioluminescence capability in the marine fish Porichthys notatus, by vargula (crustacean) [14C]luciferin and unlabelled analogues. J. Exp. Biol. 137, 39–51 (1988).

    CAS  Google Scholar 

  60. Cachat, J.M. et al. Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat. Protocols, in press (2010).

    Google Scholar 

Download references

Acknowledgments

The study was supported by Tulane university Intramural funds, the Gordon and the G. Lurcy Fellowships, Provost’s Scholarly Enrichment Fund, Newcomb Fellows Grant, LA Board of Regents Pfund, NARSAD YI award and Zebrafish Neuroscience Research Consortium (ZNRC).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Stewart, A. et al. (2011). Intraperitoneal Injection as a Method of Psychotropic Drug Delivery in Adult Zebrafish. In: Kalueff, A., Cachat, J. (eds) Zebrafish Neurobehavioral Protocols. Neuromethods, vol 51. Humana Press. https://doi.org/10.1007/978-1-60761-953-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-953-6_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-952-9

  • Online ISBN: 978-1-60761-953-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics