Skip to main content

Measuring Endocrine (Cortisol) Responses of Zebrafish to Stress

  • Protocol
  • First Online:
Zebrafish Neurobehavioral Protocols

Abstract

The zebrafish (Danio rerio) is rapidly becoming a popular model species in stress and neuroscience research. Their behavior, robustly affected by environmental and pharmacological manipulations, can be paralleled by physiological (endocrine) analysis. Zebrafish have a hypothalamic-pituitary-interrenal (HPI) axis, which is homologous to the human hypothalamic-pituitary-adrenal (HPA) axis. While mice and rats use corticosterone as their main stress hormone, both humans and zebrafish utilize cortisol. This protocol explains the whole-body cortisol extraction procedure and the use of the human salivary cortisol ELISA kit to measure the amount of cortisol in each zebrafish sample. The ability to correlate physiological data from individual fish with behavioral data provides researchers with a valuable tool for investigating stress and anxiety, and contributes to the utility of zebrafish neurobehavioral models of stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alsop, D. & Vijayan, M.M. Development of the corticosteroid stress axis and receptor expression in zebrafish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R711–R719 (2008).

    Article  PubMed  CAS  Google Scholar 

  2. Suzuki, H., Kawasaki, M., Ohnishi, H., Nakamura, T., & Ueta, Y. Regulatory mechanism of the vasopressin-enhanced green fluorescent protein fusion gene expression in acute and chronic stress. Peptides 30(9), 1763–1770 (2009).

    Article  Google Scholar 

  3. Tsigos, C. & Chrousos, G.P. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 53, 865–871 (2002).

    Article  PubMed  Google Scholar 

  4. Dedovic, K., Duchesne, A., Andrews, J., Engert, V., & Pruessner, J.C. The brain and the stress axis: the neural correlates of cortisol regulation in response to stress. Neuroimage 47(3), 864–871 (2009).

    Article  PubMed  Google Scholar 

  5. McEwen, B.S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87, 873–904 (2007).

    Article  PubMed  Google Scholar 

  6. Pruessner, J.C., Dedovic, K., Pruessner, M., Lord, C., Buss, C., Collins, L., Dagher, A., & Lupien, S.J. Stress regulation in the central nervous system: evidence from structural and functional neuroimaging studies in human populations. Psychoneuroendocrinology 35, 179–191 (2009).

    Article  Google Scholar 

  7. Kern, S., Oakes, T.R., Stone, C.K., McAuliff, E.M., Kirschbaum, C., & Davidson, R.J. Glucose metabolic changes in the prefrontal cortex are associated with HPA axis response to a psychosocial stressor. Psychoneuroendocrinology 33, 517–529 (2008).

    Article  PubMed  CAS  Google Scholar 

  8. Bremner, J.D. Does stress damage the brain? Biol. Psychiatry 45, 797–805 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. Willner, P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology 134, 319–329 (1997).

    Article  PubMed  CAS  Google Scholar 

  10. Jacobsen, L.K., Southwick, S.M., & Kosten, T.R. Substance use disorders in patients with posttraumatic stress disorder: a review of the literature. Am. J. Psychiatry 158, 1184–1190 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. To, T.T., Hahner, S., Nica, G., Rohr, K.B., Hammerschmidt, M., Winkler, C., & Allolio, B. Pituitary-interrenal interaction in zebrafish interrenal organ development. Mol. Endocrinol. 21, 472–485 (2007).

    Article  PubMed  CAS  Google Scholar 

  12. Winberg, S., Nilsson, A., Hylland, P., Soderstom, V., & Nilsson, G.E. Serotonin as a regulator of hypothalamic-pituitary-interrenal activity in teleost fish. Neurosci. Lett. 230, 113–116 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. Alderman, S.L. & Bernier, N.J. Ontogeny of the corticotropin-releasing factor system in zebrafish. Gen. Comp. Endocrinol. 139, 251–265 (2009).

    Google Scholar 

  14. Egan, R.J., Bergner, C.L., Hart, P.C., Cachat, J.M., Canavello, P.R., Elegante, M.F., Elkhayat, S.I., Bartels, B.K., Tien, A.T., Tien, D.H., Mohnot, S., Beeson, E., Glasgow, E., Amri, H., Zukowska, Z., & Kalueff, A.V. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav. Brain Res. (2009).

    Google Scholar 

  15. Dallman, M.F., Akana, S.F., Levin, N., Walker, C.D., Bradbury, M.J., Suemaru, S., & Scribner, K.S. Corticosteroids and the control of function in the hypothalamo-pituitary-adrenal (HPA) axis. Ann. N. Y. Acad. Sci. 746, 22–31; (1994) discussion 31–22, 64–27.

    Article  PubMed  CAS  Google Scholar 

  16. Zon, L.I. & Peterson, R.T. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 4, 35–44 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. Cachat, J.M., Stewart, A.M., Grossman, L., Gaikwad, S., Kadri, F., Min Chung, K., Wu, N., Wong, K., Roy, S., Suciu, C., Goodspeed, J., Elegante, M., Bartels, B., Elkhayat, S., Tien, D., Tan, J., Denmark, A., Gilder, T., Kyzar, E., DiLeo, J., Frank, K., Chang, K., Utterback, E., Hart, P., & Kalueff, A. Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat. Protoc. 5, 1786–1977 (2010).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NARSAD YI award (AVK), Georgetown University’s Stress Physiology and Research Center, Tulane Neuroscience Program (DHT), Tulane LAMP Program (WH), Zebrafish Neuroscience Research Consortium (ZNRC) and Tulane University intramural research funds.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Canavello, P.R. et al. (2011). Measuring Endocrine (Cortisol) Responses of Zebrafish to Stress. In: Kalueff, A., Cachat, J. (eds) Zebrafish Neurobehavioral Protocols. Neuromethods, vol 51. Humana Press. https://doi.org/10.1007/978-1-60761-953-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-953-6_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-952-9

  • Online ISBN: 978-1-60761-953-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics