Skip to main content

Measuring Agonistic Behavior in Zebrafish

  • Protocol
  • First Online:
Zebrafish Neurobehavioral Protocols

Part of the book series: Neuromethods ((NM,volume 51))

Abstract

Adult zebrafish (Danio rerio) are territorial, show aggressive behavior, and establish dominant-subordinate hierarchies. Here, a protocol for a standard opponent setup is described, which enables the identification, characterization, and quantification of agonistic activities of zebrafish. Following a period of social isolation, zebrafish are placed into an observation tank, engage in an agonistic encounter, and establish a dominance hierarchy within 15 min. The analysis of the behavior includes quantification of activities such as lateral display, frontal display, chasing and nipping over the course of the observational period with the help of The Observer® program. As a result, an event plot and a histogram are generated, which show the dynamics of agonistic activities. The described method can be used to quantify the effects of drug treatment or to identify modified activity patterns in mutant zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drews, C. The concept and definition of dominance in animal behavior. Behaviour 125, 283–313 (1993).

    Article  Google Scholar 

  2. Scott, J.P. & Fredericson, E. The causes of fighting in mice and rats. Physiol. Zool. 24, 273–309 (1951).

    Google Scholar 

  3. Neat, F.C., Huntingford, F.A., & Beveridge, M.M.C. Fighting and assessment in male cichlid fish: the effects of asymmetries in gonadal state and body size. Animal Behav. 55, 883–891 (1998).

    Article  Google Scholar 

  4. Chen, S., Lee, A.Y., Bowens, N.M., Huber, R., & Kravitz, E.A. Fighting fruit flies: a model system for the study of aggression. Proc. Natl. Acad. Sci. U. S. A. 99, 5664–5668 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. Earley, R.L., Hsu, Y.Y., & Wolf, L.L. The use of standard aggression testing methods to predict combat behaviour and contest outcome in Rivulus marmoratus dyads (Teleostei: Cyprinodontidae). Ethology 106, 743–761 (2000).

    Article  Google Scholar 

  6. Fernald, R.D. Quantitative behavioural observations of Haplochromis burtoni under semi-natural conditions. Animal Behav. 25, 643–653 (1977).

    Article  Google Scholar 

  7. Fernald, R.D. & Hirata, N.R. Field study of Haplochromis burtoni: quantitative behavioural observations. Animal Behav. 25, 964–975 (1977).

    Article  Google Scholar 

  8. Keenleyside, M.H.A. & Yamamoto, F.T. Territorial behavior of juvenile Atlantic salmon (Salmo salar L). Behaviour 19, 139–169 (1962).

    Article  Google Scholar 

  9. Lahti, K., Huuskonen, H., Laurila, A., & Piironen, J. Metabolic rate and aggressiveness between Brown Trout populations. Funct. Ecol. 16, 167–174 (2002).

    Article  Google Scholar 

  10. Hoglund, E., Kolm, N., & Winberg, S. Stress-induced changes in brain serotonergic activity, plasma cortisol and aggressive behavior in Arctic charr (Salvelinus alpinus) is counteracted by L-DOPA. Physiol. Behav. 74, 381–389 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. White, R.B., Eisen, J.A., Kasten, T.L., & Fernald, R.D. Second gene for gonadotropin-releasing hormone in humans. Proc. Natl. Acad. Sci. U. S. A. 95, 305–309 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. White, R.B. & Fernald, R.D. Genomic structure and expression sites of three gonadotropin-releasing hormone genes in one species. Gen. Comp. Endocrinol. 112, 17–25 (1998).

    Article  PubMed  CAS  Google Scholar 

  13. Winberg, S., Winberg, Y., & Fernald, R.D. Effect of social rank on brain monoaminergic activity in a cichlid fish. Brain Behav. Evol. 49, 230–236 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. Brockerhoff, S.E., Hurley, J.B., Janssen-Bienhold, U., Neuhauss, S.C., Driever, W., & Dowling, J.E. A behavioral screen for isolating zebrafish mutants with visual system defects. Proc. Natl. Acad. Sci. U. S. A. 92, 10545–10549 (1995).

    Article  PubMed  CAS  Google Scholar 

  15. Darland, T. & Dowling, J.E. Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc. Natl. Acad. Sci. U. S. A. 98, 11691–11696 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. Granato, M., van Eeden, F.J., Schach, U., Trowe, T., Brand, M., Furutani-Seiki, M., Haffter, P., Hammerschmidt, M., Heisenberg, C.P., Jiang, Y.J., Kane, D.A., Kelsh, R.N., Mullins, M.C., Odenthal, J., & Nusslein-Volhard, C. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 123, 399–413 (1996).

    PubMed  CAS  Google Scholar 

  17. Bill, B.R., Petzold, A.M., Clark, K.J., Schimmenti, L.A., & Ekker, S.C. A primer for morpholino use in zebrafish. Zebrafish 6, 69–77 (2009).

    Article  PubMed  CAS  Google Scholar 

  18. Ekker, S.C. Zinc finger-based knockout punches for zebrafish genes. Zebrafish 5, 121–123 (2008).

    Article  PubMed  CAS  Google Scholar 

  19. Hyatt, T.M. & Ekker, S.C. Vectors and techniques for ectopic gene expression in zebrafish. Methods Cell Biol. 59, 117–126 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. Thompson, T.I. Visual reinforcement in Siamese fighting fish. Science 141, 55–57 (1963).

    Article  PubMed  CAS  Google Scholar 

  21. Thompson, T. & Sturm, T. Visual-reinforcer color, and operant behavior in Siamese fighting fish. J. Exp. Anal. Behav. 8, 341–344 (1965).

    Article  PubMed  CAS  Google Scholar 

  22. Peeke, H.V.S. & Peeke, S.C. Habituation of conspecific aggressive responses in the siamese fighting fish (Betta splendens). Behaviour 36, 232–245 (1970).

    Article  Google Scholar 

  23. Overli, O., Harris, C.A., & Winberg, S. Short-term effects of fights for social dominance and the establishment of dominant-subordinate relationships on brain monoamines and cortisol in rainbow trout. Brain Behav. Evol. 54, 263 (1999).

    Article  PubMed  CAS  Google Scholar 

  24. Winberg, S., Overli, O., & Lepage, O. Suppression of aggression in rainbow trout (Oncorhynchus mykiss) by dietary L-tryptophan. J. Exp. Biol. 204, 3867–3876 (2001).

    PubMed  CAS  Google Scholar 

  25. Gerlai, R. Zebra fish: an uncharted behavior genetic model. Behav. Gene. 33, 461 (2003).

    Article  Google Scholar 

  26. Larson, E.T., O‘Malley, D.M., & Melloni, J.R.H. Aggression and vasotocin are associated with dominant-subordinate relationships in zebrafish. Behav. Brain Res. 167, 94–102 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. Spence, R. & Smith, C. Male territoriality mediates density and sex ratio effects on oviposition in the zebrafish, Danio rerio. Animal Behav. 69, 1317–1323 (2005).

    Article  Google Scholar 

  28. Blaser, R. & Gerlai, R. Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods. Behav. Res. Methods. 38, 456–469 (2006).

    Article  PubMed  Google Scholar 

  29. Norton, W.H., Webb, K., Harris, M., Rohner, N., Nüsslein-Vollhard, C., Ninkovic, J., Folchert, A., & Bally-Cuif, L., 2008. Approaches to analyse mood disorders in zebrafish in Proceedings of Measuring Behavior (eds. Spink, A.J., Ballintijn, M.R., Bogers, N.D., Grieco, F., Loijens, L.W.S., Noldus, L.P.J.J., Smit, G., & Zimmermann, P.H.) (Maastricht, The Netherlands, p. 53).

    Google Scholar 

  30. Saverino, C. & Gerlai, R. The social zebrafish: Behavioral responses to conspecific, heterospecific, and computer animated fish. Behav. Brain Res. 191, 77–87 (2008).

    Article  PubMed  Google Scholar 

  31. Westerfield, M. The Zebrafish Book: A guide for the laboratory use of zebrafish (Danio rerio). (University of Oregon, Eugene, OR, 2000).

    Google Scholar 

  32. Huber, R. & Kravitz, E.A. A quantitative analysis of agonistic behavior in juvenile American lobsters (Homarus americanus L). Brain Behav. Evol. 46, 72–83 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by grants form DePauw University (DPU) and William Paterson University of New Jersey (WPUNJ). The following students participated in the project: Adriane Brown (WPUNJ), Kim Eliasz (WPUNJ), Meral Karakoc (WPUNJ), and Paul Porter (DPU).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schneider, H. (2011). Measuring Agonistic Behavior in Zebrafish. In: Kalueff, A., Cachat, J. (eds) Zebrafish Neurobehavioral Protocols. Neuromethods, vol 51. Humana Press. https://doi.org/10.1007/978-1-60761-953-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-953-6_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-952-9

  • Online ISBN: 978-1-60761-953-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics