Skip to main content

LATE-PCR and Allied Technologies: Real-Time Detection Strategies for Rapid, Reliable Diagnosis from Single Cells

  • Protocol
  • First Online:
Book cover PCR Mutation Detection Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 688))

Abstract

Accurate detection of gene sequences in single cells is the ultimate challenge of PCR sensitivity. Unfortunately, commonly used conventional and real-time PCR techniques are often too unreliable at that level to provide the accuracy needed for clinical diagnosis. Here we provide details of Linear-After-The-Exponential-PCR (LATE-PCR), a method similar to asymmetric PCR in the use of primers at ­different concentrations, but with novel design criteria to insure high efficiency and specificity. LATE-PCR increases the signal strength and allele discrimination capability of oligonucleotide probes such as molecular beacons and reduces variability among replicate samples. The analysis of real-time kinetics of LATE-PCR signals provides a means for improving the accuracy of single-cell genetic diagnosis.

This chapter is revised from an earlier version published in “Methods Mol Med” (2007) vol. 132 pp. 65–85

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tyagi, S. and Kramer, F.R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14, 303–308.

    Article  PubMed  CAS  Google Scholar 

  2. Heid, C.A., Stevens, J., Livak, K.J., and Williams, P.M. (1996) Real time quantitative PCR. Genome Res 6, 986–994.

    Article  PubMed  CAS  Google Scholar 

  3. Kostrikis, L.G., Tyagi, S., Mhlanga, M.M., Ho, D.D., and Kramer, F.R. (1998) Spectral genotyping of human alleles. Science 279, 1228–1229.

    Article  PubMed  CAS  Google Scholar 

  4. Gyllensten, U.B. and Erlich, H.A. (1988) Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci USA 85, 7652–7656.

    Article  PubMed  CAS  Google Scholar 

  5. Sanchez, J.A., Pierce, K.E., Rice, J.E., and Wangh, L.J. (2004) Linear-after-the-exponential (LATE)-PCR: an advanced method of asymmetric PCR and its uses in quantitative real-time analysis. Proc Natl Acad Sci USA 101, 1933–1938.

    Article  PubMed  CAS  Google Scholar 

  6. Pierce, K.E., Rice, J.E., Sanchez, J.A., and Wangh, L.J. (2005) Linear-after-the-exponential (LATE)-PCR: primer design criteria for high yields of specific single-stranded DNA and improved real-time detection. Proc Natl Acad Sci USA 102, 8609–8614.

    Article  PubMed  CAS  Google Scholar 

  7. Pierce, K.E., Rice, J.E., Sanchez, J.A., and Wangh, L.J. (2003) Detection of cystic ­fibrosis alleles from single cells using molecular ­beacons and a novel method of asymmetric real-time PCR. Mol Hum Reprod 9, 815–820.

    Article  PubMed  CAS  Google Scholar 

  8. Salk, J.J., Sanchez, J.A., Pierce, K.E., Rice, J.E., Soares, K.C., and Wangh, L.J. (2006) Direct amplification of single-stranded DNA for pyrosequencing using linear-after-the-exponential (LATE)-PCR. Anal Biochem 353, 124–132.

    Article  PubMed  CAS  Google Scholar 

  9. Rice, J.E., Sanchez, J.A., Pierce, K.E., Reis, A.H. Jr., Osborn, A., and Wangh, L.J (2007) Monoplex/multiplex linear-after-the-exponential-PCR assays combined with PrimeSafe and Dilute-‘N’-Go sequencing. Nat Protoc 2, 2429–2438.

    Article  PubMed  CAS  Google Scholar 

  10. Pierce, K.E., Rice, J.E., Sanchez, J.A., and Wangh, L.J. (2002) QuantiLyse™: reliable DNA amplification from single cells. Biotechniques 32, 1106–1111.

    PubMed  CAS  Google Scholar 

  11. Allawi, H.T. and SantaLucia, J. (1997) Thermodynamics and NMR of internal G.T mismatches in DNA. Biochemistry 36, 10581–10594.

    Article  PubMed  CAS  Google Scholar 

  12. SantaLucia, J. (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci USA 95, 1460–1465.

    Article  PubMed  CAS  Google Scholar 

  13. Owczarzy, R., Vallone, P.M., Gallo, F.J., Paner, T.M., Lane, M.J., and Benight, A.S. (1998) Predicting sequence-dependent melting stability of short duplex DNA oligomers. Biopolymers 44, 217–239.

    Article  Google Scholar 

  14. Breslauer, K.J. (1986) Methods for obtaining thermodynamic data on oligonucleotide transitions. In Hinz, H. (ed.) Thermodynamic Data for Biochemistry and Biotechnology, Springer-Verlag, New York, pp. 402–427.

    Chapter  Google Scholar 

  15. Le Novère, N. (2001) MELTING, computing the melting temperature of nucleic acid duplex. Bioinformatics 17, 1226–1227.

    Article  PubMed  Google Scholar 

  16. SantaLucia, J., Allawi, H.T., and Seneviratne, P.A. (1996) Improved nearest-neighbor parameters for predicting DNA duplex ­stability. Biochemistry 35, 3555–3562.

    Article  PubMed  CAS  Google Scholar 

  17. Wetmur, J.G. (1991) DNA probes: applications of the principles of nucleic acid hybridization. Crit Rev Biochem Mol Biol 26, 227–259.

    Article  PubMed  CAS  Google Scholar 

  18. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.

    Article  PubMed  CAS  Google Scholar 

  19. Marras, S.A.E., Kramer, F.R., and Tyagi, S. (2003) Genotyping single nucleotide polymorphisms with molecular beacons. In Kwok, P.Y. (ed.) Single Nucleotide Polymorphisms: Methods and Protocols, Humana Press, Totowa, NJ, Vol. 212, pp. 111–128.

    Chapter  Google Scholar 

  20. Ririe, K.M., Rasmussen, R.P., and Wittwer, C.T. (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245, 154–160.

    Article  PubMed  CAS  Google Scholar 

  21. Pierce, K.E., Rice, J.E., Sanchez, J.A., Brenner, C., and Wangh, L.J. (2000) Real-time PCR using molecular beacons for accurate detection of the Y chromosome in single human blastomeres. Mol Hum Reprod 6, 1155–1164.

    Article  PubMed  CAS  Google Scholar 

  22. Rice, J.E., Sanchez, J.A., Pierce, K.E., and Wangh, L.J. (2002) Real-time PCR with molecular beacons provides a highly accurate assay for Tay–Sachs alleles in single cells. Prenat Diagn 22, 1130–1134.

    Article  PubMed  CAS  Google Scholar 

  23. Rosner, B. (1995) Fundamentals of Biostatistics. Wadsworth Publishing Company, Belmont, CA, pp. 277–282.

    Google Scholar 

  24. Rechitsky, S., Verlinsky, O., Amet, T., Rechitsky, M., Kouliev, T., Strom, C., and Verlinsky, Y. (2001) Reliability of preimplantation diagnosis for single gene disorders. Mol Cell Endocrinol 183, S65–S68.

    Article  PubMed  CAS  Google Scholar 

  25. Al-Soud, W.A., Jonsson, L.J., and Radstrom, P. (2000) Identification and characterization of immunoglobulin G in blood as a major inhibitor of diagnostic PCR. J Clin Microbiol 38, 345–350.

    PubMed  CAS  Google Scholar 

  26. Al-Soud, W.A. and Radstrom, P. (2001) Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 39, 485–493.

    Article  PubMed  CAS  Google Scholar 

  27. Cui, X.F., Li, H.H., Goradia, T.M., Lange, K., Kazazian, H.H. Jr., Galas, D., and Arnheim, N. (1989) Single-sperm typing: determination of genetic distance between the G gamma-globin and parathyroid hormone loci by using the polymerase chain reaction and allele-specific oligomers. Proc Natl Acad Sci USA 86, 9389–9393.

    Article  PubMed  CAS  Google Scholar 

  28. Li, Q., Luan, G., Guo, Q., and Liang, J. (2002) A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Res 30, e5.

    Article  PubMed  Google Scholar 

  29. Cheng, J., Zhang, Y., and Li, Q. (2004) Real-time PCR genotyping using displacing probes. Nucleic Acids Res 32, e61.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Aquiles Sanchez, John Rice, Christina Hartshorn, Kevin Soares, and Jesse Salk have made contributions to the development and testing of LATE-PCR. This work was funded by Brandeis University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth E. Pierce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Pierce, K.E., Wangh, L.J. (2011). LATE-PCR and Allied Technologies: Real-Time Detection Strategies for Rapid, Reliable Diagnosis from Single Cells. In: Theophilus, B., Rapley, R. (eds) PCR Mutation Detection Protocols. Methods in Molecular Biology, vol 688. Humana Press. https://doi.org/10.1007/978-1-60761-947-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-947-5_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-946-8

  • Online ISBN: 978-1-60761-947-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics