Skip to main content

Methods to Assess Pericyte-Endothelial Cell Interactions in a Coculture Model

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 686))

Abstract

The blood-brain barrier (BBB) comprises the microvascular endothelial cells, pericytes, and astrocytes, which are connected by the extracellular matrix (ECM). Current BBB models focus solely on the microvascular endothelial cells which constitute a physical barrier by formation of tight junctions (TJs), while the impact of pericytes on barrier regulation is poorly understood. We established a coculture model from primary porcine brain capillary endothelial cells (PBCECs) and pericytes (PBCPs) to approach the in vivo situation. This model allows the examination of pericyte impact on pharmacological, transport, migration, and metabolic activity of the BBB. In vivo the interaction between pericytes and endothelial cells is partly controlled by the ECM which is remodeled by matrix metalloproteinases (MMPs). Both endothelial cells and pericytes secrete MMPs which are important not only for ECM remodeling but also for TJ cleavage. In this chapter, current methods to study the interactions of these cell types by ECM signaling as well as MMP secretion are described.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Allt G, Lawrenson JG (2001) Pericytes: cell biology and pathology. Cells Tissues Organs 169(1):1–11

    Article  CAS  PubMed  Google Scholar 

  2. Balabanov R, Dore-Duffy P (1998) Role of the CNS microvascular pericyte in the blood-brain barrier. J Neurosci Res 53(6):637–644

    Article  CAS  PubMed  Google Scholar 

  3. Cai J, Boulton M (2002) The pathogenesis of diabetic retinopathy: old concepts and new questions. Eye 16(3):242–260

    Article  CAS  PubMed  Google Scholar 

  4. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410

    Article  CAS  PubMed  Google Scholar 

  5. Merker HJ (1994) Morphology of the basement membrane. Microsc Res Tech 28(2):95–124

    Article  CAS  PubMed  Google Scholar 

  6. Osawa T, Feng XY, Yamamoto M, Nozaka M, Nozaka Y (2003) Development of the basement membrane and formation of collagen fibrils below the placodes in the head of anuran larvae. J Morphol 255(2):244–252

    Article  PubMed  Google Scholar 

  7. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185

    Article  CAS  PubMed  Google Scholar 

  8. Farkas E, Luiten PG (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64(6):575–611

    Article  CAS  PubMed  Google Scholar 

  9. Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97(11):1093–1107

    Article  CAS  PubMed  Google Scholar 

  10. Rosenberg GA (2002) Matrix metalloproteinases in neuroinflammation. Glia 39(3):279–291

    Article  PubMed  Google Scholar 

  11. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69(3):562–573

    Article  CAS  PubMed  Google Scholar 

  12. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92(8):827–839

    Article  CAS  PubMed  Google Scholar 

  13. Rosenberg GA, Yang Y (2007) Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus 22(5):E4

    Article  PubMed  Google Scholar 

  14. Franke H, Galla HJ, Beuckmann CT (1999) An improved low-permeability in vitro-model of the blood-brain barrier: transport studies on retinoids, sucrose, haloperidol, caffeine and mannitol. Brain Res 818(1):65–71

    Article  CAS  PubMed  Google Scholar 

  15. Franke H, Galla H, Beuckmann CT (2000) Primary cultures of brain microvessel endothelial cells: a valid and flexible model to study drug transport through the blood-brain barrier in vitro. Brain Res Brain Res Protoc 5(3):248–256

    Article  CAS  PubMed  Google Scholar 

  16. Mischeck U, Meyer J, Galla HJ (1989) Characterization of gamma-glutamyl transpeptidase activity of cultured endothelial cells from porcine brain capillaries. Cell Tissue Res 256(1):221–226

    Article  CAS  PubMed  Google Scholar 

  17. Bowman PD, Ennis SR, Rarey KE, Betz AL, Goldstein GW (1983) Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Ann Neurol 14(4):396–402

    Article  CAS  PubMed  Google Scholar 

  18. Zozulya A, Weidenfeller C, Galla HJ (2008) Pericyte-endothelial cell interaction increases MMP-9 secretion at the blood-brain barrier in vitro. Brain Res 1189:1–11

    Article  CAS  PubMed  Google Scholar 

  19. Hoheisel D, Nitz T, Franke H, et al (1998) Hydrocortisone reinforces the blood-brain properties in a serum free cell culture system. Biochem Biophys Res Commun 247(2):312–315

    Article  CAS  PubMed  Google Scholar 

  20. Wegener J, Abrams D, Willenbrink W, Galla HJ, Janshoff A (2004) Automated multi-well device to measure transepithelial electrical resistances under physiological conditions. Biotechniques 37(4):590; 2–4; 6–7

    Google Scholar 

  21. Nakagawa S, Deli MA, Nakao S, et al (2007) Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 27(6):687–694

    Article  CAS  PubMed  Google Scholar 

  22. Lohmann C, Huwel S, Galla HJ (2002) Predicting blood-brain barrier permeability of drugs: evaluation of different in vitro assays. J Drug Target 10(4):263–276

    Article  CAS  PubMed  Google Scholar 

  23. Giaever I, Keese CR (1993) A morphological biosensor for mammalian cells. Nature 366(6455):591–592

    Article  CAS  PubMed  Google Scholar 

  24. Wegener J, Keese CR, Giaever I (2000) Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res 259(1):158–166

    Article  CAS  PubMed  Google Scholar 

  25. Hartmann C, Zozulya A, Wegener J, Galla HJ (2007) The impact of glia-derived extracellular matrices on the barrier function of cerebral endothelial cells: an in vitro study. Exp Cell Res 313(7):1318–1325

    Article  CAS  PubMed  Google Scholar 

  26. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  CAS  PubMed  Google Scholar 

  27. Knight CG, Willenbrock F, Murphy G (1992) A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases. FEBS Lett 296(3):263–266

    Article  CAS  PubMed  Google Scholar 

  28. Lohmann C, Krischke M, Wegener J, Galla HJ (2004) Tyrosine phosphatase inhibition induces loss of blood-brain barrier integrity by matrix metalloproteinase-dependent and -independent pathways. Brain Res 995(2):184–196

    Article  CAS  PubMed  Google Scholar 

  29. Clark IM, ed. Matrix Metalloproteinase Protocols. Humana Press, Totowa, 2001

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Sabine Hüwel for his comments on this work, technical assistance and helpful discussions. This work was supported by a fellowship awarded to Gokulan Thanabalasundaram by the International Graduate School of Chemistry, Münster.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Thanabalasundaram, G., El-Gindi, J., Lischper, M., Galla, HJ. (2011). Methods to Assess Pericyte-Endothelial Cell Interactions in a Coculture Model. In: Nag, S. (eds) The Blood-Brain and Other Neural Barriers. Methods in Molecular Biology, vol 686. Humana Press. https://doi.org/10.1007/978-1-60761-938-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-938-3_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-937-6

  • Online ISBN: 978-1-60761-938-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics