Skip to main content

Analysis of Mouse Brain Microvascular Endothelium Using Laser Capture Microdissection Coupled with Proteomics

  • Protocol
  • First Online:
Book cover The Blood-Brain and Other Neural Barriers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 686))

Abstract

The blood–brain barrier (BBB) has been well studied in terms of its pharmacological properties. However, for a better understanding of the molecular mechanisms regulating these activities, means to thoroughly investigate the BBB at the genomic and proteomic levels are essential. Global gene expression analysis platforms have, in fact, provided a venue for cataloguing the BBB transcriptome. By comparison, and largely because of technical issues, there have been few comprehensive studies of the cerebral microvasculature at the protein level. Recent advances in both microdissection techniques and proteomic analytical tools have nonetheless circumvented many of these obstacles, allowing for isolation of relatively pure cell populations from complex tissues in situ and profiling of cellular proteomes. For example, immunohistochemistry-guided laser capture microdissection (immuno-LCM) provides the unique opportunity to selectively remove brain microvascular endothelial cells from the surrounding cell populations at the BBB, while supporting downstream proteomic analysis. In this chapter, we describe the use of immuno-LCM coupled with a sensitive, high resolution, hybrid linear ion trap coupled with Fourier transform mass spectrometry (FTMS) for proteomic profiling of mouse brain microvascular endothelium, a crucial cellular component of the BBB. We provide details of the quick double-immunostaining protocol for immuno-LCM, laser capture process, sample pooling, and protein recovery followed by in-gel digestion of protein sample, mass spectrometric analysis, and protein identification. Using such an approach to obtain comprehensive protein expression profiles of the cerebral endothelium in situ will enable detailed understanding of the crucial mediators of brain microvascular signaling and BBB function in both normal and pathophysiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott N J, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7, 41–53

    Article  CAS  PubMed  Google Scholar 

  2. Lok J, Gupta P, Guo S, Kim WJ, Whalen M J, van Leyen K, Lo EH (2007) Cell-cell signaling in the neurovascular unit. Neurochem Res 32, 2032–2045

    Article  CAS  PubMed  Google Scholar 

  3. Hawkins BT, Davis T P (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57, 173–185

    Article  CAS  PubMed  Google Scholar 

  4. Pardridge WM (1998) CNS drug design based on principles of blood-brain barrier transport. J Neurochem 70, 1781–1792

    Article  CAS  PubMed  Google Scholar 

  5. Enerson BE, Drewes L R (2006) The rat blood-brain barrier transcriptome. J Cereb Blood Flow Metab 26, 959–973

    Article  CAS  PubMed  Google Scholar 

  6. Haqqani AS, Nesic M, Preston E, Baumann E, Kelly J, Stanimirovic D (2005) Characterization of vascular protein expression patterns in cerebral ischemia/reperfusion using laser capture microdissection and ICAT-nanoLC-MS/MS. FASEB J 19, 1809–1821

    Article  CAS  PubMed  Google Scholar 

  7. Espina V, Wulfkuhle JD, Calvert V S, VanMeter A, Zhou W, Coukos G, Geho DH, Petricoin EF, III, Liotta LA (2006) Laser-capture microdissection. Nat Protoc 1, 586–603

    Google Scholar 

  8. Espina V, Heiby M, Pierobon M, Liotta LA (2007) Laser capture microdissection technology. Expert Rev Mol Diagn 7, 647–657

    Article  CAS  PubMed  Google Scholar 

  9. Gutstein HB, Morris JS (2007) Laser capture sampling and analytical issues in proteomics, Expert Rev Proteomics 4, 627–637

    Article  CAS  PubMed  Google Scholar 

  10. Mustafa D, Kros JM, Luider T (2008) Combining laser capture microdissection and proteomics techniques. Methods Mol Biol 428, 159–178

    Article  CAS  PubMed  Google Scholar 

  11. Harrison JK, Luo D, Streit WJ (2003) In situ hybridization analysis of chemokines and chemokine receptors in the central nervous system. Methods 29, 312–318

    Article  CAS  PubMed  Google Scholar 

  12. Vorbrodt AW (1988) Ultrastructural cytochemistry of blood-brain barrier endothelia. Prog Histochem Cytochem 18, 1–99

    CAS  PubMed  Google Scholar 

  13. Mouledous L, Hunt S, Harcourt R, Harry JL, Williams KL, Gutstein HB (2003) Proteomic analysis of immunostained, laser-capture microdissected brain samples. Electrophoresis 24, 296–302

    Article  CAS  PubMed  Google Scholar 

  14. Ahram M, Flaig MJ, Gillespie JW, Duray PH, Linehan WM, Ornstein DK, Niu S, Zhao Y, Petricoin EF, III, Emmert-Buck MR (2003) Evaluation of ethanol-fixed, paraffin-embedded tissues for proteomic applications. Proteomics 3, 413–421

    Article  CAS  PubMed  Google Scholar 

  15. Lu Q, Murugesan N, Macdonald JA, Wu SL, Pachter JS, Hancock WS (2008) Analysis of mouse brain microvascular endothelium using immuno-laser capture microdissection coupled to a hybrid linear ion trap with Fourier transform-mass spectrometry proteomics platform. Electrophoresis 29, 2689–2695

    Article  CAS  PubMed  Google Scholar 

  16. Kinnecom K, Pachter JS (2005) Selective capture of endothelial and perivascular cells from brain microvessels using laser capture microdissection. Brain Res Brain Res Protoc 16, 1–9

    Article  CAS  PubMed  Google Scholar 

  17. Macdonald JA, Murugesan N, Pachter JS (2008) Validation of immuno-laser capture microdissection coupled with quantitative RT-PCR to probe blood-brain barrier gene expression in situ. J Neurosci Methods 174, 219–226

    Article  CAS  PubMed  Google Scholar 

  18. Jones MB, Krutzsch H, Shu H, Zhao Y, Liotta LA, Kohn EC, Petricoin EF, III (2002) Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics 2, 76–84

    Article  CAS  PubMed  Google Scholar 

  19. Mouledous L, Hunt S, Harcourt R, Harry J, Williams KL, Gutstein HB (2003) Navigated laser capture microdissection as an alternative to direct histological staining for proteomic analysis of brain samples. Proteomics 3, 610–615

    Article  CAS  PubMed  Google Scholar 

  20. Lee JR, Baxter TM, Yamaguchi H, Wang TC, Goldenring JR, Anderson MG (2003) Differential protein analysis of spasomolytic polypeptide expressing metaplasia using laser capture microdissection and two-dimensional difference gel electrophoresis. Appl Immunohistochem Mol Morphol 11, 188–193

    CAS  PubMed  Google Scholar 

  21. Shekouh AR, Thompson CC, Prime W, Campbell F, Hamlett J, Herrington CS, Lemoine NR, Crnogorac-Jurcevic T, Buechler MW, Friess H, Neoptolemos JP, Pennington SR, Costello E (2003) Application of laser capture microdissection combined with two-dimensional electrophoresis for the discovery of differentially regulated proteins in pancreatic ductal adenocarcinoma, Proteomics 3, 1988–2001

    Article  CAS  PubMed  Google Scholar 

  22. Ai J, Tan Y, Ying W, Hong Y, Liu S, Wu M, Qian X, Wang H (2006) Proteome analysis of hepatocellular carcinoma by laser capture microdissection. Proteomics 6, 538–546

    Article  CAS  PubMed  Google Scholar 

  23. Yao H, Zhang Z, Xiao Z, Chen Y, Li C, Zhang P, Li M, Liu Y, Guan Y, Yu Y, Chen, Z (2008) Identification of metastasis associated proteins in human lung squamous carcinoma using two-dimensional difference gel electrophoresis and laser capture microdissection. Lung Cancer doi:10.1016/j.lungcan.2008.10.024

    PubMed  Google Scholar 

  24. Li MX, Xiao ZQ, Liu YF, Chen YH, Li C, Zhang PF, Li MY, Li F, Peng F, Duan CJ, Yi H, Yao HX, Chen ZC (2009) Quantitative proteomic analysis of differential proteins in the stroma of nasopharyngeal carcinoma and normal nasopharyngeal epithelial tissue. J Cell Biochem 106, 570–579

    Article  CAS  PubMed  Google Scholar 

  25. Wu SL, Hancock WS, Goodrich GG, Kunitake ST (2003) An approach to the proteomic analysis of a breast cancer cell line (SKBR-3). Proteomics 3, 1037–1046

    Article  CAS  PubMed  Google Scholar 

  26. Niu HT, Zhang YB, Jiang HP, Cheng B, Sun G, Wang YEYJ, Pang DQ, Chang JW (2008) Differences in shotgun protein expression profile between superficial bladder transitional cell carcinoma and normal urothelium. Urol Oncol doi:10.1016/j.urolonc.2008.07.007

    PubMed  Google Scholar 

  27. Nan Y, Yang S, Tian Y, Zhang W, Zhou B, Bu L, Huo S (2008) Analysis of the expression protein profiles of lung squamous carcinoma cell using shot-gun proteomics strategy. Med Oncol doi: 10.1007/s12032-008-9109-4

    Google Scholar 

  28. Li C, Hong Y, Tan YX, Zhou H, Ai JH, Li SJ, Zhang L, Xia QC, Wu JR, Wang HY, Zeng R (2004) Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry. Mol Cell Proteomics 3, 399–409

    Article  CAS  PubMed  Google Scholar 

  29. Zang L, Palmer Toy D, Hancock WS, Sgroi DC, Karger BL (2004) Proteomic analysis of ductal carcinoma of the breast using laser capture microdissection, LC-MS, and 16O/18O isotopic labeling. J Proteome Res 3, 604–612

    Article  CAS  PubMed  Google Scholar 

  30. Neubauer H, Clare SE, Kurek R, Fehm T, Wallwiener D, Sotlar K, Nordheim A, Wozny W, Schwall GP, Poznanovic S, Sastri C, Hunzinger C, Stegmann W, Schrattenholz A, Cahill MA (2006) Breast cancer proteomics by laser capture microdissection, sample pooling, 54-cm IPG IEF, and differential iodine radioisotope detection. Electrophoresis 27, 1840–1852

    Article  CAS  PubMed  Google Scholar 

  31. Umar A, Luider TM, Foekens JA, Pasa-Tolic L (2007) NanoLC-FT-ICR MS improves proteome coverage attainable for approximately 3000 laser-microdissected breast carcinoma cells. Proteomics 7, 323–329

    Article  CAS  PubMed  Google Scholar 

  32. Gu Y, Wu SL, Meyer JL, Hancock WS, Burg LJ, Linder J, Hanlon DW, Karger BL (2007) Proteomic analysis of high-grade dysplastic cervical cells obtained from ThinPrep slides using laser capture microdissection and mass spectrometry. J Proteome Res 6, 4256–4268

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants RO-1-MH54718 and R21-NS057241 to J.S. Pachter. The authors thank Dr. Barry Karger of Northeastern University for application development of LCM with MS.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Murugesan, N., Macdonald, J.A., Lu, Q., Wu, SL., Hancock, W.S., Pachter, J.S. (2011). Analysis of Mouse Brain Microvascular Endothelium Using Laser Capture Microdissection Coupled with Proteomics. In: Nag, S. (eds) The Blood-Brain and Other Neural Barriers. Methods in Molecular Biology, vol 686. Humana Press. https://doi.org/10.1007/978-1-60761-938-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-938-3_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-937-6

  • Online ISBN: 978-1-60761-938-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics