Skip to main content

Application of QSAR and Shape Pharmacophore Modeling Approaches for Targeted Chemical Library Design

  • Protocol
  • First Online:
Chemical Library Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 685))

Abstract

Optimization of chemical library composition affords more efficient identification of hits from biological screening experiments. The optimization could be achieved through rational selection of reagents used in combinatorial library synthesis. However, with a rapid advent of parallel synthesis methods and availability of millions of compounds synthesized by many vendors, it may be more efficient to design targeted libraries by means of virtual screening of commercial compound collections. This chapter reviews the application of advanced cheminformatics approaches such as quantitative structure–activity relationships (QSAR) and pharmacophore modeling (both ligand and structure based) for virtual screening. Both approaches rely on empirical SAR data to build models; thus, the emphasis is placed on achieving models of the highest rigor and external predictive power. We present several examples of successful applications of both approaches for virtual screening to illustrate their utility. We suggest that the expert use of both QSAR and pharmacophore models, either independently or in combination, enables users to achieve targeted libraries enriched with experimentally confirmed hit compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng, W., Cho, S. J., Tropsha, A. (1998) Rational combinatorial library design. 1. Focus-2D: a new approach to the design of targeted combinatorial chemical libraries. J Chem Inf Comput Sci 38, 251–258.

    Article  CAS  PubMed  Google Scholar 

  2. Cho, S. J., Zheng, W., Tropsha, A. (1998) Focus-2D: a new approach to the design of targeted combinatorial chemical libraries, in (Altman, R. B., Dunker, A. K., Hunter, L., Klein, T. E. eds.) Pacific Symposium on Biocomputing ʹ98, Hawaii, Jan 4–9, 1998. World Scientific, Singapore, pp. 305–316.

    Google Scholar 

  3. Jamois, E. A. (2003) Reagent-based and product-based computational approaches in library design. Curr Opin Chem Biol 7, 326–330.

    Article  CAS  PubMed  Google Scholar 

  4. Irwin, J. J., Shoichet, B. K. (2005) ZINC–a free database of commercially available compounds for virtual screening. J Chem Inf Model 45, 177–182.

    Article  CAS  PubMed  Google Scholar 

  5. Oprea, T., Tropsha, A. (2006) Target, chemical and bioactivity databases – integration is key. Drug Discov Today 3, 357–365.

    Google Scholar 

  6. Varnek, A., Tropsha, A. (2008) Cheminformatics Approaches to Virtual Screening, RSC, London.

    Book  Google Scholar 

  7. Tropsha, A. (2006) I in (Martin, Y. C., ed.) Comprehensive Medicinal Chemistry I. pp. 113–126, Elsevier, Oxford.

    Google Scholar 

  8. Golbraikh, A. and Tropsha, A. (2002)Beware of q2! J Mol Graph Model 20, 269–276.

    Article  CAS  PubMed  Google Scholar 

  9. Novellino, E., Fattorusso, C., Greco, G. (1995) Use of comparative molecular field analysis and cluster analysis in series design. Pharm Acta Helv 70, 149–154.

    Article  CAS  Google Scholar 

  10. Norinder, U. (1996) Single and domain made variable selection in 3D QSAR applications. J Chemomet 10, 95–105.

    Article  CAS  Google Scholar 

  11. Tropsha, A., Cho, S. J. (1998) in (Kubinyi, H., Folkers, G., and Martin, Y. C., eds.) 3D QSAR in Drug Design. Kluwer, Dordrecht, The Netherlands, pp. 57–69.

    Google Scholar 

  12. Tropsha, A., Gramatica, P., Gombar, V. K. (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. Quant Struct Act Relat Comb Sci 22, 69–77.

    CAS  Google Scholar 

  13. Golbraikh, A., Tropsha, A. (2002) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J Comput Aided Mol Des 16, 357–369.

    Article  CAS  PubMed  Google Scholar 

  14. Golbraikh, A., Shen, M., Xiao, Z., Xiao, Y. D., Lee, K. H., Tropsha, A. (2003) Rational selection of training and test sets for the development of validated QSAR models. J Comput Aided Mol Des 17, 241–253.

    Article  CAS  PubMed  Google Scholar 

  15. Pavan, M., Netzeva, T. I., Worth, A. P. (2006) Validation of a QSAR model for acute toxicity. SAR QSAR Environ Res 17, 147–171.

    Article  CAS  PubMed  Google Scholar 

  16. Vracko, M., Bandelj, V., Barbieri, P., Benfenati, E., Chaudhry, Q., Cronin, M., Devillers, J., Gallegos, A., Gini, G., Gramatica, P., Helma, C., Mazzatorta, P., Neagu, D., Netzeva, T., Pavan, M., Patlewicz, G., Randic, M., Tsakovska, I., Worth, A. (2006) Validation of counter propagation neural network models for predictive toxicology according to the OECD principles: a case study. SAR QSAR Environ Res 17, 265–284.

    Article  CAS  PubMed  Google Scholar 

  17. Saliner, A. G., Netzeva, T. I., Worth, A. P. (2006) Prediction of estrogenicity: validation of a classification model. SAR QSAR Environ Res 17, 195–223.

    Article  CAS  PubMed  Google Scholar 

  18. Roberts, D. W., Aptula, A. O., Patlewicz, G. (2006) Mechanistic applicability domains for non-animal based prediction of toxicological endpoints. QSAR analysis of the Schiff base applicability domain for skin sensitization. Chem Res Toxicol 19, 1228–1233.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, S., Golbraikh, A., Tropsha, A. (2006) Development of quantitative structure-binding affinity relationship models based on novel geometrical chemical descriptors of the protein-ligand interfaces. J Med Chem 49, 2713–2724.

    Article  CAS  PubMed  Google Scholar 

  20. Golbraikh, A., Bonchev, D., Tropsha, A. (2001) Novel chirality descriptors derived from molecular topology. J Chem Inf Comput Sci 41, 147–158.

    Article  CAS  PubMed  Google Scholar 

  21. Kovatcheva, A., Buchbauer, G., Golbraikh, A., Wolschann, P. (2003) QSAR modeling of alpha-campholenic derivatives with sandalwood odor. J Chem Inf Comput Sci 43, 259–266.

    Article  CAS  PubMed  Google Scholar 

  22. Kovatcheva, A., Golbraikh, A., Oloff, S., Xiao, Y. D., Zheng, W., Wolschann, P., Buchbauer, G., Tropsha, A. (2004) Combinatorial QSAR of ambergris fragrance compounds. J Chem Inf Comput Sci 44, 582–595.

    Article  CAS  PubMed  Google Scholar 

  23. Shen, M., Xiao, Y., Golbraikh, A., Gombar, V. K., Tropsha, A. (2003) Development and validation of k-nearest-neighbor QSPR models of metabolic stability of drug candidates. J Med Chem 46, 3013–3020.

    Article  CAS  PubMed  Google Scholar 

  24. Shen, M., LeTiran, A., Xiao, Y., Golbraikh, A., Kohn, H., Tropsha, A. (2002) Quantitative structure-activity relationship analysis of functionalized amino acid anticonvulsant agents using k nearest neighbor and simulated annealing PLS methods. J Med Chem 45, 2811–2823.

    Article  CAS  PubMed  Google Scholar 

  25. Shen, M., Beguin, C., Golbraikh, A., Stables, J. P., Kohn, H., Tropsha, A. (2004) Application of predictive QSAR models to database mining: identification and experimental validation of novel anticonvulsant compounds. J Med Chem 47, 2356–2364.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, S., Golbraikh, A., Oloff, S., Kohn, H., Tropsha, A. (2006) A Novel Automated Lazy Learning QSAR (ALL-QSAR) approach: method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models. J Chem Inf Model 46, 1984–1995.

    Article  CAS  PubMed  Google Scholar 

  27. Golbraikh, A., Shen, M., Xiao, Z., Xiao, Y. D., Lee, K. H., Tropsha, A. (2003) Rational selection of training and test sets for the development of validated QSAR models. J Comput Aided Mol Des 17, 241–253.

    Article  CAS  PubMed  Google Scholar 

  28. Eriksson, L., Jaworska, J., Worth, A. P., Cronin, M. T., McDowell, R. M., Gramatica, P. (2003) Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect 111, 1361–1375.

    Article  CAS  PubMed  Google Scholar 

  29. Sachs, L. (1984) Handbook of Statistics. Springer, Heidelberg.

    Google Scholar 

  30. Tropsha, A., Golbraikh, A. (2007) Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr Pharm Des 13, 3494–3504.

    Article  CAS  PubMed  Google Scholar 

  31. Tropsha, A. (2005) in (Oprea, T., ed.) Cheminformatics in Drug Discovery., Wiley-VCH, New York, pp. 437–455.

    Chapter  Google Scholar 

  32. Medina-Franco, J. L., Golbraikh, A., Oloff, S., Castillo, R., Tropsha, A. (2005) Quantitative structure-activity relationship analysis of pyridinone HIV-1 reverse transcriptase inhibitors using the k nearest neighbor method and QSAR-based database mining. J Comput Aided Mol Des 19, 229–242.

    Article  CAS  PubMed  Google Scholar 

  33. Oloff, S., Mailman, R. B., Tropsha, A. (2005) Application of validated QSAR models of D1 dopaminergic antagonists for database mining. J Med Chem 48, 7322–7332.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, S., Wei, L., Bastow, K., Zheng, W., Brossi, A., Lee, K. H., Tropsha, A. (2007) Antitumor Agents 252. Application of validated QSAR models to database mining: discovery of novel tylophorine derivatives as potential anticancer agents. J Comput Aided Mol Des 21, 97–112.

    Article  CAS  PubMed  Google Scholar 

  35. Hsieh, J. H., Wang, X. S., Teotico, D., Golbraikh, A., Tropsha, A. (2008) Differentiation of AmpC beta-lactamase binders vs. decoys using classification kNN QSAR modeling and application of the QSAR classifier to virtual screening. J Comput Aided Mol Des 22, 593–609.

    Article  CAS  PubMed  Google Scholar 

  36. Tang, H., Wang, X. S., Huang, X. P., Roth, B. L., Butler, K. V., Kozikowski, A. P., Jung, M., Tropsha, A. (2009) Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation. J Chem Inf Model 49, 461–476.

    Article  CAS  PubMed  Google Scholar 

  37. Peterson, Y. K., Wang, X. S., Casey, P. J., Tropsha, A. (2009) Discovery of geranylgeranyltransferase-I inhibitors with novel scaffolds by the means of quantitative structure-activity relationship modeling, virtual screening, and experimental validation. J Med Chem 52, 4210–4220.

    Article  CAS  PubMed  Google Scholar 

  38. CCG. Molecular Operation Environment. 2008.

    Google Scholar 

  39. MolconnZ. http://www.edusoft-lc.com/molconn/ . 2010.

  40. Zheng, W., Tropsha, A. (2000) Novel variable selection quantitative structure–property relationship approach based on the k-nearest-neighbor principle. J Chem Inf Comput Sci 40, 185–194.

    Article  CAS  PubMed  Google Scholar 

  41. Cho, S. J., Zheng, W., Tropsha, A. (1998) Rational combinatorial library design. 2. Rational design of targeted combinatorial peptide libraries using chemical similarity probe and the inverse QSAR approaches. J Chem Inf Comput Sci 38, 259–268.

    Article  CAS  PubMed  Google Scholar 

  42. Tropsha, A., Zheng, W. (2001) Identification of the descriptor pharmacophores using variable selection QSAR: applications to database mining. Curr Pharm Des 7, 599–612.

    Article  CAS  PubMed  Google Scholar 

  43. DesJarlais, R. L., Sheridan, R. P., Seibel, G. L., Dixon, J. S., Kuntz, I. D., Venkataraghavan, R. (1988) Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure. J Med Chem 31, 722–729.

    Article  CAS  PubMed  Google Scholar 

  44. Grant, J. A., Gallardo, M. A., Pickup, B. T. (1996) A fast method of molecular shape comparison: a simple application of a Gaussian description of molecular shape. J Comput Chem 17, 1653–1666.

    Article  CAS  Google Scholar 

  45. Zauhar, R. J., Moyna, G., Tian, L., Li, Z., Welsh, W. J. (2003) Shape signatures: a new approach to computer-aided ligand- and receptor-based drug design. J Med Chem 46, 5674–5690.

    Article  CAS  PubMed  Google Scholar 

  46. Meyer, A. Y., Richards, W. G. (1991) Similarity of molecular shape. J Comput Aided Mol Des 5, 427–439.

    Article  CAS  PubMed  Google Scholar 

  47. Good, A. C., Richards, W. G. (1993) Rapid evaluation of shape similarity using Gaussian functions. J Chem Inf Comput Sci 33, 112–116.

    Article  CAS  Google Scholar 

  48. ROCS. version 3.0.0. 2009. Santa Fe, NM, USA, OpenEye Scientific Software.

    Google Scholar 

  49. OEShape Toolkit. version 1.7.2. 2009. Santa Fe, NM, USA, OpenEye Scientific Software.

    Google Scholar 

  50. Carbo, R., Domingo, L. (1987) Lcao-Mo similarity measures and taxonomy. Int J Quantum Chem 32, 517–545.

    Article  CAS  Google Scholar 

  51. Carbo, R., Leyda, L., Arnau, M. (1980) An electron density measure of the similarity between two compounds. Int J Quantum Chem 17, 1185–1189.

    Article  CAS  Google Scholar 

  52. Masek, B. B., Merchant, A., Matthew, J. B. (1993) Molecular shape comparison of angiotensin II receptor antagonists. J Med Chem 36, 1230–1238.

    Article  CAS  PubMed  Google Scholar 

  53. Ballester, P. J., Richards, W. G. (2007) Ultrafast shape recognition to search compound databases for similar molecular shapes. J Comput Chem 28, 1711–1723.

    Article  CAS  PubMed  Google Scholar 

  54. Breneman, C. M., Thompson, T. R., Rhem, M., Dung, M. (1995) Electron-density modeling of large systems using the transferable atom equivalent method. Comput Chem 19, 161.

    Article  CAS  Google Scholar 

  55. Breneman, C. M., Sundling, C. M., Sukumar, N., Shen, L., Katt, W. P., Embrechts, M. J. (2003) New developments in PEST shape/property hybrid descriptors. J Comput Aided Mol Des 17, 231–240.

    Article  CAS  PubMed  Google Scholar 

  56. Das, S., Kokardekar, A., Breneman, C. M. (2009) Rapid comparison of protein binding site surfaces with property encoded shape distributions. J Chem Inf Model 49, 2863–2872.

    Article  CAS  PubMed  Google Scholar 

  57. Nilakantan, R., Bauman, N., Venkataraghavan, R. (1993) New method for rapid characterization of molecular shapes: applications in drug design. J Chem Inf Comput Sci 33, 79–85.

    Article  CAS  PubMed  Google Scholar 

  58. Schlosser, J., Rarey, M. (2009) Beyond the virtual screening paradigm: structure-based searching for new lead compounds. J Chem Inf Model 49, 800–809.

    Article  CAS  PubMed  Google Scholar 

  59. Zauhar, R. J. (1995) SMART: a solvent-accessible triangulated surface generator for molecular graphics and boundary element applications. J Comput Aided Mol Des 9, 149–159.

    Article  CAS  PubMed  Google Scholar 

  60. Hawkins, P. C., Skillman, A. G., Nicholls, A. (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50, 74–82.

    Article  CAS  PubMed  Google Scholar 

  61. McGaughey, G. B., Sheridan, R. P., Bayly, C. I., Culberson, J. C., Kreatsoulas, C., Lindsley, S., Maiorov, V., Truchon, J. F., Cornell, W. D. (2007) Comparison of topological, shape, and docking methods in virtual screening. J Chem Inf Model 47, 1504–1519.

    Article  CAS  PubMed  Google Scholar 

  62. Daylight. version 4.82. 2003. Aliso Viejo, CA, USA, Daylight Chemical Information Systems Inc.

    Google Scholar 

  63. Kearsley, S. K., Sallamack, S., Fluder, E. M., Andose, J. D., Mosley, R. T., Sheridan, R. P. (1996) Chemical similarity using physiochemical property descriptors. J Chem Inf Comput Sci 36, 118–127.

    Article  CAS  Google Scholar 

  64. Miller, M. D., Sheridan, R. P., Kearsley, S. K. (1999) SQ: a program for rapidly producing pharmacophorically relevant molecular superpositions. J Med Chem 42, 1505–1514.

    Article  CAS  PubMed  Google Scholar 

  65. Miller, M. D., Kearsley, S. K., Underwood, D. J., Sheridan, R. P. (1994) FLOG: a system to select ‘quasi-flexible’ ligands complementary to a receptor of known three-dimensional structure. J Comput Aided Mol Des 8, 153–174.

    Article  CAS  PubMed  Google Scholar 

  66. McGann, M. R., Almond, H. R., Nicholls, A., Grant, J. A., aBrown, F. K. (2003) Gaussian docking functions Biopolymers 68, 76–90.

    Article  CAS  PubMed  Google Scholar 

  67. Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., Shenkin, P. S. (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47, 1739–1749.

    Article  CAS  PubMed  Google Scholar 

  68. Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., Banks, J. L. (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47, 1750–1759.

    Article  CAS  PubMed  Google Scholar 

  69. Moffat, K., Gillet, V. J., Whittle, M., Bravi, G., Leach, A. R. (2008) A comparison of field-based similarity searching methods: CatShape, FBSS, and ROCS. J Chem Inf Model 48, 719–729.

    Article  CAS  PubMed  Google Scholar 

  70. Hahn, M. (1997) Three-dimensional shape-based searching of conformationally flexible compounds. J Chem Inf Comput Sci 37, 80–86.

    Article  CAS  Google Scholar 

  71. Wild, D. J., Willett, P. (1996) Similarity searching in files of three-dimensional chemical structures. Alignment of molecular electrostatic potential fields with a genetic algorithm. J Chem Inf Comput Sci 36, 159–167.

    Article  CAS  Google Scholar 

  72. Ebalunode, J. O., Ouyang, Z., Liang, J., Zheng, W. (2008) Novel approach to structure-based pharmacophore search using computational geometry and shape matching techniques. J Chem Inf Model 48, 889–901.

    Article  PubMed  Google Scholar 

  73. Ebalunode, J. O., Zheng, W. (2009) Unconventional 2D shape similarity method affords comparable enrichment as a 3D shape method in virtual screening experiments. J Chem Inf Model 49, 1313–1320.

    Article  CAS  PubMed  Google Scholar 

  74. Nagarajan, K., Zauhar, R., Welsh, W. J. (2005) Enrichment of ligands for the serotonin receptor using the shape signatures approach. J Chem Inf Model 45, 49–57.

    Article  CAS  PubMed  Google Scholar 

  75. Ballester, P. J., Finn, P. W., Richards, W. G. (2009) Ultrafast shape recognition: evaluating a new ligand-based virtual screening technology. J Mol Graph Model 27, 836–845.

    Article  CAS  PubMed  Google Scholar 

  76. Tawa, G. J., Baber, J. C., Humblet, C. (2009) Computation of 3D queries for ROCS based virtual screens. J Comput Aided Mol Des 23, 853–868.

    Article  CAS  PubMed  Google Scholar 

  77. Kirchmair, J., Distinto, S., Markt, P., Schuster, D., Spitzer, G. M., Liedl, K. R., Wolber, G. (2009) How to optimize shape-based virtual screening: choosing the right query and including chemical information. J Chem Inf Model 49, 678–692.

    Article  CAS  PubMed  Google Scholar 

  78. Nagarajan, K., Zauhar, R., Welsh, W. J. (2005) Enrichment of ligands for the serotonin receptor using the shape signatures approach. J Chem Inf Model 45, 49–57.

    Article  CAS  PubMed  Google Scholar 

  79. Wolber, G., Langer, T. (2005) LigandScout: 3-d pharmacophores derived from protein-bound Ligands and their use as virtual screening filters. J Chem Inf Model 45, 160–169.

    Article  CAS  PubMed  Google Scholar 

  80. Lee, H. S., Lee, C. S., Kim, J. S., Kim, D. H., Choe, H. (2009) Improving virtual screening performance against conformational variations of receptors by shape matching with ligand binding pocket. J Chem Inf Model 49, 2419–2428.

    Article  CAS  PubMed  Google Scholar 

  81. Markt, P., Petersen, R. K., Flindt, E. N., Kristiansen, K., Kirchmair, J., Spitzer, G., Distinto, S., Schuster, D., Wolber, G., Laggner, C., Langer, T. (2008) Discovery of novel PPAR ligands by a virtual screening approach based on pharmacophore modeling, 3D Shape, and electrostatic similarity screening. J Med Chem 51, 6303–6317.

    Article  CAS  PubMed  Google Scholar 

  82. Rush, T. S., Grant, J. A., Mosyak, L., Nicholls, A. (2005) A shape-based 3-D scaffold hopping method and its application to a bacterial protein protein interaction. J Med Chem 48, 1489–1495.

    Article  CAS  PubMed  Google Scholar 

  83. Cramer, R. D., Poss, M. A., ermsmeier, M. A., Caulfield, T. J., Kowala, M. C., Valentine, M. T. (1999) Prospective identification of biologically active structures by topomer shape similarity searching. J Med Chem 42, 3919–3933.

    Article  PubMed  Google Scholar 

  84. Cramer, R. D., Jilek, R. J., Guessregen, S., Clark, S. J., Wendt, B., Clark, R. D. (2004) “Lead Hopping.” Validation of topomer similarity as a superior predictor of similar biological activities. J Med Chem 47, 6777–6791.

    Article  CAS  PubMed  Google Scholar 

  85. Muchmore, S. W., Souers, A. J., Akritopoulou-Zanze, I. (2006) The use of three-dimensional shape and electrostatic similarity searching in the identification of a melanin-concentrating hormone receptor 1 antagonist. Chem Biol Drug Des 67, 174–176.

    Article  CAS  PubMed  Google Scholar 

  86. Perez-Nueno, V. I., Ritchie, D. W., Rabal, O., Pascual, R., Borrell, J. I., Teixido, J. (2008) Comparison of ligand-based and receptor-based virtual screening of HIV entry inhibitors for the CXCR4 and CCR5 receptors using 3D ligand shape matching and ligand-receptor docking. J Chem Inf Model 48, 509–533.

    Article  CAS  PubMed  Google Scholar 

  87. Ballester, P. J., Westwood, I., Laurieri, N., Sim, E., Richards, W. G. (2010) Prospective virtual screening with Ultrafast shape recognition: the identification of novel inhibitors of arylamine N-acetyltransferases. J R Soc Interface 7, 335–342.

    Article  CAS  PubMed  Google Scholar 

  88. Ebalunode, J. O., Dong, X., Ouyang, Z., Liang, J., Eckenhoff, R. G., Zheng, W. (2009) Structure-based shape pharmacophore modeling for the discovery of novel anesthetic compounds. Bioorg Med Chem 17, 5133–5138.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

AT acknowledges the support from NIH (grant R01GM066940). J.E. and W.Z. acknowledge the financial support by the Golden Leaf Foundation via the BRITE Institute, North Carolina Central University. W.Z. also acknowledges funding from NIH (grant SC3GM086265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry O. Ebalunode .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Science+Business Media, LLC

About this protocol

Cite this protocol

Ebalunode, J.O., Zheng, W., Tropsha, A. (2011). Application of QSAR and Shape Pharmacophore Modeling Approaches for Targeted Chemical Library Design. In: Zhou, J. (eds) Chemical Library Design. Methods in Molecular Biology, vol 685. Humana Press. https://doi.org/10.1007/978-1-60761-931-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-931-4_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-930-7

  • Online ISBN: 978-1-60761-931-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics