Skip to main content

A Scalable Approach to Combinatorial Library Design

  • Protocol
  • First Online:
Chemical Library Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 685))

  • 1418 Accesses

Abstract

In this chapter, we describe an algorithm for the design of lead-generation libraries required in combinatorial drug discovery. This algorithm addresses simultaneously the two key criteria of diversity and representativeness of compounds in the resulting library and is computationally efficient when applied to a large class of lead-generation design problems. At the same time, additional constraints on experimental resources are also incorporated in the framework presented in this chapter. A computationally efficient scalable algorithm is developed, where the ability of the deterministic annealing algorithm to identify clusters is exploited to truncate computations over the entire dataset to computations over individual clusters. An analysis of this algorithm quantifies the trade-off between the error due to truncation and computational effort. Results applied on test datasets corroborate the analysis and show improvement by factors as large as ten or more depending on the datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gordon, E. M., Barrett, R. W., Dower, W. J., Fodor, S. P. A., Gallop, M. A. (1994) Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions. J Med Chem 37(10), 1385–1401.

    Article  PubMed  CAS  Google Scholar 

  2. Blaney, J., Martin, E. (1997) Computational approaches for combinatorial library design and molecular diversity analysis. Curr Opin Chem Biol 1, 54–59.

    Article  PubMed  CAS  Google Scholar 

  3. Willett, P. (1997) Computational tools for the analysis of molecular diversity. Perspect Drug Discov Design, 7/8, 1–11.

    CAS  Google Scholar 

  4. Rassokhin, D. N., Agrafiotis, D. K. (2000) Kolmogorov-Smirnov statistic and its applications in library design. J Mol Graph Model 18(4–5), 370–384.

    Google Scholar 

  5. Lipinski, C. A., Lomabardo, F., Dominy, B. W., Feeny, P. J. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development setting. Adv Drug Del Review 23, 2–25.

    Google Scholar 

  6. Higgs, R. E., Bemis, K. G., Watson, I. A., Wikel, J. H. (1997) Experimental designs for selecting molecules from large chemical databases. J Chem Inf Comput Sci 37, 861–870.

    Article  CAS  Google Scholar 

  7. Clark, R. D. (1997) Optisim: an extended dissimilarity selection method for finding diverse representative subsets. J Chem Inf Comput Sci 37(6), 1181–1188.

    Article  CAS  Google Scholar 

  8. Agrafiotis, D. K., Lobanov, V. S. (2000) Ultrafast algorithm for designing focussed combinatorial arrays. J Chem Inf Comput Sci 40, 1030–1038.

    Article  PubMed  CAS  Google Scholar 

  9. Salapaka, S., Khalak, A. (2003) Constraints on locational optimization problems. Proceedings of the IEEE Control and Decisions Conference. Maui, HI, 9–12 December 2003, pp. 1741–1746.

    Google Scholar 

  10. Sharma, P., Salapaka, S., Beck, C. (2008) A scalable approach to combinatorial library design for drug discovery. J Chem Inf Model 48(1), 27–41.

    Article  PubMed  CAS  Google Scholar 

  11. Gersho, A., Gray, R. (1991) Vector Quantization and Signal Compression. Kluwer, Boston, Massachusetts.

    Google Scholar 

  12. Drezner, Z. (1995) Facility location: a survey of applications and methods. Springer Series in Operations Research, Springer, New York.

    Google Scholar 

  13. Du, Q., Faber, V., Gunzburger, M. (1999) Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev 41(4), 637–676.

    Article  Google Scholar 

  14. Therrien, C. W. (1989) Decision, Estimation and Classification: An Introduction to Pattern Recognition and Related Topics, 1st ed. Wiley, New York.

    Google Scholar 

  15. Haykin, S. (1998) Neural Networks: A Comprehensive Foundation, Prentice Hall, Englewoods Cliffs, NJ.

    Google Scholar 

  16. Gray, R., Karnin, E. D. (1982) Multiple local minima in vector quantizers. IEEE Trans Inform Theor 28, 256–361.

    Article  Google Scholar 

  17. Lloyd, S. P. (1982) Least squares quantization in PCM. IEEE Trans Inform Theory 28(2), 129–137.

    Article  Google Scholar 

  18. Rose, K. (1998) Deterministic annealing for clustering, compression, classification, regression and related optimization problems. Proc IEEE 86(11), 2210–2239.

    Article  Google Scholar 

  19. Mcmaster hts lab competition. HTS data mining and docking competition. http://hts.mcmaster.ca/downloads/82bfbeb4-f2a4-4934-b6a8-804cad8e25a0.html (accessed June 2006).

  20. Guha, R. (2006) Chemistry Development Kit (CDK) descriptor calculator GUI (v 0.46). http://cheminfo.informatics.indiana.edu/rguha/code/java/cdkdesc.html (accessed October 2006).

  21. Steinbeck, C., Hoppe, C., Kuhn, S., Floris, M., Guha, R., Willighagen, E. L. (2006) Recent developments of the Chemistry Development Kit (CDK) – an open-source JAVA library for chemo and bioinformatics. Curr Pharm Des 12(17), 2110–2120.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Science+Business Media, LLC

About this protocol

Cite this protocol

Sharma, P., Salapaka, S., Beck, C. (2011). A Scalable Approach to Combinatorial Library Design. In: Zhou, J. (eds) Chemical Library Design. Methods in Molecular Biology, vol 685. Humana Press. https://doi.org/10.1007/978-1-60761-931-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-931-4_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-930-7

  • Online ISBN: 978-1-60761-931-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics