Skip to main content

Fragment-Based Drug Design

  • Protocol
  • First Online:
Book cover Chemical Library Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 685))

Abstract

Fragment-based drug design (FBDD), which is comprised of both fragment screening and the use of fragment hits to design leads, began more than 15 years ago and has been steadily gaining in popularity and utility. Its origin lies on the fact that the coverage of chemical space and the binding efficiency of hits are directly related to the size of the compounds screened. Nevertheless, FBDD still faces challenges, among them developing fragment screening libraries that ensure optimal coverage of chemical space, physical properties and chemical tractability. Fragment screening also requires sensitive assays, often biophysical in nature, to detect weak binders. In this chapter we will introduce the technologies used to address these challenges and outline the experimental advantages that make FBDD one of the most popular new hit-to-lead process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lipinski, C. A., Lombardo, F., Dominy, B. W., Feeney, P. J. (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46, 3–26.

    Article  CAS  PubMed  Google Scholar 

  2. Keseru, G. M., Makara, G. M. (2009) The influence of lead discovery strategies on the properties of drug candidates. Nat Rev Drug Discov 8, 203–212.

    Article  PubMed  Google Scholar 

  3. Jencks, W. P. (1981) On the attribution and additivity of binding energies. Proc Natl Acad Sci U S A 78, 4046–4050.

    Article  CAS  PubMed  Google Scholar 

  4. Nakamura, C. E., Abeles, R. H. (1985) Mode of interaction of beta-hydroxy-beta-methylglutaryl coenzyme A reductase with strong binding inhibitors: compactin and related compounds. Biochemistry 24, 1364–1376.

    Article  CAS  PubMed  Google Scholar 

  5. Bohacek, R. S., McMartin, C., Guida, W. C. (1996) The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev 16, 3–50.

    Article  CAS  PubMed  Google Scholar 

  6. Kuntz, I. D., Chen, K., Sharp, K. A., Kollman, P. A. (1999) The maximal affinity of ligands. Proc Natl Acad Sci U S A 96, 9997–10002.

    Article  CAS  PubMed  Google Scholar 

  7. Hopkins, A. L., Groom, C. R. (2002) The druggable genome. Nat Rev Drug Discov 1, 727–730.

    Article  CAS  PubMed  Google Scholar 

  8. Congreve, M., Carr, R., Murray, C., Jhoti, H. (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 8, 876–877.

    Article  PubMed  Google Scholar 

  9. Hajduk, P. J. (2006) Fragment-based drug design: how big is too big? J Med Chem 49, 6972–6976.

    Article  CAS  PubMed  Google Scholar 

  10. Bemis, G. W., Murcko, M. A. (1996) The properties of known drugs. 1. Molecular frameworks. J Med Chem 39, 2887–2893.

    Article  CAS  PubMed  Google Scholar 

  11. Hann, M. M., Leach, A. R., Harper, G. (2001) Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Comput Sci 41, 856–864.

    Article  CAS  PubMed  Google Scholar 

  12. Schuffenhauer, A., Ruedisser, S., Marzinzik, A. L., Jahnke, W., Blommers, M., Selzer, P., Jacoby, E. (2005) Library design for fragment based screening. Curr Top Med Chem 5, 751–762.

    Article  CAS  PubMed  Google Scholar 

  13. Chessari, G., Woodhead, A. J. (2009) From fragment to clinical candidate–a historical perspective. Drug Discov Today 14, 668–675.

    Article  CAS  PubMed  Google Scholar 

  14. Moriz, M., Bernd, M. (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Intl Ed 38, 1784–1788.

    Article  Google Scholar 

  15. Dalvit, C., Pevarello, P., Tato, M., Veronesi, M., Vulpetti, A., Sundstrom, M. (2000) Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J Biomol NMR 18, 65–68.

    Article  CAS  PubMed  Google Scholar 

  16. Jhoti, H., Cleasby, A., Verdonk, M., Williams, G. (2007) Fragment-based screening using X-ray crystallography and NMR spectroscopy. Curr Opin Chem Biol 11, 485–493.

    Article  CAS  PubMed  Google Scholar 

  17. Annis, D. A., Nickbarg, E., Yang, X., Ziebell, M. R., Whitehurst, C. E. (2007) Affinity selection-mass spectrometry screening techniques for small molecule drug discovery. Curr Opin Chem Biol 11, 518–526.

    Article  CAS  PubMed  Google Scholar 

  18. Erlanson, D. A., Braisted, A. C., Raphael, D. R., Randal, M., Stroud, R. M., Gordon, E. M., Wells, J. A. (2000) Site-directed ligand discovery. Proc Natl Acad Sci U S A 97, 9367–9372.

    Article  CAS  PubMed  Google Scholar 

  19. Neumann, T., Junker, H. D., Schmidt, K., Sekul, R. (2007) SPR-based fragment screening: advantages and applications. Curr Top Med Chem 7, 1630–1642.

    Article  CAS  PubMed  Google Scholar 

  20. Hesterkamp, T., Barker, J., Davenport, A., Whittaker, M. (2007) Fragment based drug discovery using fluorescence correlation: spectroscopy techniques: challenges and solutions. Curr Top Med Chem 7, 1582–1591.

    Article  CAS  PubMed  Google Scholar 

  21. Danziger, D. J., Dean, P. M. (1989) Automated site-directed drug design: the prediction and observation of ligand point positions at hydrogen-bonding regions on protein surfaces. Proc R Soc Lond B Biol Sci 236, 115–124.

    Article  CAS  PubMed  Google Scholar 

  22. Gillet, V., Myatt, G., Zsoldos, Z., Johnson, A. (1995) SPROUT, HIPPO and CAESA: Tools for de novo structure generation and estimation of synthetic accessibility. Perspect Drug Discov Design 3, 34–50.

    Article  CAS  Google Scholar 

  23. Evensen, E., Joseph-McCarthy, D., Weiss, G. A., Schreiber, S. L., Karplus, M. (2007) Ligand design by a combinatorial approach based on modeling and experiment: application to HLA-DR4. J Comput Aided Mol Des 21, 395–418.

    Article  CAS  PubMed  Google Scholar 

  24. Miranker, A., Karplus, M. (1991) Functionality maps of binding sites: a multiple copy simultaneous search method. Proteins 11, 29–34.

    Article  CAS  PubMed  Google Scholar 

  25. Clark, M., Meshkat, S., Talbot, G. T., Carnevali, P., Wiseman, J. S. (2009) Fragment-based computation of binding free energies by systematic sampling. J Chem Inf Model 49, 1901–1913.

    Article  CAS  PubMed  Google Scholar 

  26. Gillet, V., Johnson, A. P., Mata, P., Sike, S., Williams, P. (1993) SPROUT: a program for structure generation. J Comput Aided Mol Des 7, 127–153.

    Article  CAS  PubMed  Google Scholar 

  27. Gillet, V. J., Newell, W., Mata, P., Myatt, G., Sike, S., Zsoldos, Z., Johnson, A. P. (1994) SPROUT: recent developments in the de novo design of molecules. J Chem Inf Comput Sci 34, 207–217.

    Article  CAS  PubMed  Google Scholar 

  28. Nishibata, Y., Itai, A. (1991) Automatic creation of drug candidate structures based on receptor structure. Starting point for artificial lead generation. Tetrahedron 47, 8985–8990.

    Article  CAS  Google Scholar 

  29. Bohm, H. J. (1993) A novel computational tool for automated structure-based drug design. J Mol Recognit 6, 131–137.

    Article  CAS  PubMed  Google Scholar 

  30. Bohacek, R. S., McMartin, C. (1994) Multiple highly diverse structures complementary to enzyme binding sites: results of extensive application of a de novo design method incorporating combinatorial growth. J Am Chem Soc 116, 5560–5571.

    Article  CAS  Google Scholar 

  31. Todorov, N. P., Dean, P. M. (1997) Evaluation of a method for controlling molecular scaffold diversity in de novo ligand design. J Comput Aided Mol Des 11, 175–192.

    Article  CAS  PubMed  Google Scholar 

  32. Todorov, N. P., Dean, P. M. (1998) A branch-and-bound method for optimal atom-type assignment in de novo ligand design. J Comput Aided Mol Des 12, 335–349.

    Article  CAS  PubMed  Google Scholar 

  33. Ishchenko, A. V., Shakhnovich, E. I. (2002) SMall Molecule Growth 2001 (SMoG2001): an improved knowledge-based scoring function for protein-ligand interactions. J Med Chem 45, 2770–2780.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, R., Gao, Y., Lai, L. (2000) LigBuilder: a multi-purpose program for structure-based drug design. J Mol Model 6, 498–516.

    Article  CAS  Google Scholar 

  35. Murray, C. W., Verdonk, M. L. (2002) The consequences of translational and rotational entropy lost by small molecules on binding to proteins. J Comput Aided Mol Des 16, 741–753.

    Article  CAS  PubMed  Google Scholar 

  36. Thompson, D. C., Denny, R. A., Nilakantan, R., Humblet, C., Joseph-McCarthy, D., Feyfant, E. (2008) CONFIRM: connecting fragments found in receptor molecules. J Comput Aided Mol Des 22, 761–772.

    Article  CAS  PubMed  Google Scholar 

  37. Eisen, M. B., Wiley, D. C., Karplus, M., Hubbard, R. E. (1994) HOOK: a program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site. Proteins 19, 199–221.

    Article  CAS  PubMed  Google Scholar 

  38. Clark, D. E., Frenkel, D., Levy, S. A., Li, J., Murray, C. W., Robson, B., Waszkowycz, B., Westhead, D. R. (1995) PRO-LIGAND: an approach to de novo molecular design. 1. Application to the design of organic molecules. J Comput Aided Mol Des 9, 13–32.

    Article  CAS  PubMed  Google Scholar 

  39. Lauri, G., Bartlett, P. A. (1994) CAVEAT: a program to facilitate the design of organic molecules. J Comput Aided Mol Des 8, 51–66.

    Article  CAS  PubMed  Google Scholar 

  40. Yang, Y., Nesterenko, D. V., Trump, R. P., Yamaguchi, K., Bartlett, P. A., Drueckhammer, D. G. (2005) Virtual hydrocarbon and combinatorial databases for use with CAVEAT. J Chem Inf Model 45, 1820–1823.

    Article  CAS  PubMed  Google Scholar 

  41. Maass, P., Schulz-Gasch, T., Stahl, M., Rarey, M. (2007) ReCore: a fast and versatile method for scaffold hopping based on small molecule crystal structure conformations. J Chem Inf Model 47(2), 390–9.

    Article  CAS  PubMed  Google Scholar 

  42. Mori, S., Abeygunawardana, C., Johnson, M. O., van Zijl P. C. (1995) Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J Magn Reson B 108(1), 94–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Science+Business Media, LLC

About this protocol

Cite this protocol

Feyfant, E., Cross, J.B., Paris, K., Tsao, D.H. (2011). Fragment-Based Drug Design. In: Zhou, J. (eds) Chemical Library Design. Methods in Molecular Biology, vol 685. Humana Press. https://doi.org/10.1007/978-1-60761-931-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-931-4_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-930-7

  • Online ISBN: 978-1-60761-931-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics