Skip to main content

Conditioned Place Preference Models of Drug Dependence and Relapse to Drug Seeking: Studies with Nicotine and Ethanol

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 52))

Abstract

Addiction is a complex psychiatric disorder characterised by a spectrum of compulsive drug-seeking behaviours and a persistent tendency to relapse (return to drug taking) even after prolonged periods of abstinence. The most commonly used models for the study of drug reward and dependence involve drug self-administration paradigms in mice, rats or monkeys. However, assays using drug-induced conditioned place preference (CPP) have become increasingly popular due in part to the non-invasive and simple nature of the procedure. Using self-administration and conditioned place preference assays we and others have shown that zebrafish show reinforcement responses to common drugs of abuse including ethanol, nicotine, amphetamine, cocaine and opiates and are thus a suitable model for analysis of factors affecting ‘reward’. Our work reviewed here further demonstrates that on prolonged exposure to nicotine or ethanol, zebrafish show persistent drug seeking in the face of adverse stimuli, and that drug seeking can be reinstated following extinction using stimuli that induce reinstatement in mammalian models and relapse in humans. Thus our work supports the use of zebrafish as a model system for the study of genetic/molecular mechanisms underlying vulnerability to drug dependence and addiction.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mueller, D., Perdikaris, D. & Stewart, J. (2002) Persistence and drug-induced reinstatement of a morphine-induced conditioned place preference. Behav Brain Res 136, 389–397.

    Article  PubMed  CAS  Google Scholar 

  2. Mueller, D. & Stewart, J. (2000) Cocaine-induced conditioned place preference: reinstatement by priming injections of cocaine after extinction. Behav Brain Res 115, 39–47.

    Article  PubMed  CAS  Google Scholar 

  3. O’Brien, C. P. & Gardner, E. L. (2005) Critical assessment of how to study addiction and its treatment: human and non-human animal models. Pharmacol Ther 108, 18–58.

    Article  PubMed  Google Scholar 

  4. Tzschentke, T. M. (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12, 227–462.

    Article  PubMed  CAS  Google Scholar 

  5. Stewart, J. (2003) Stress and relapse to drug seeking: studies in laboratory animals shed light on mechanisms and sources of long-term vulnerability. Am J Addict 12, 1–17.

    PubMed  CAS  Google Scholar 

  6. Tzschentke, T. M. (1998) Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 56, 613–672.

    Article  PubMed  CAS  Google Scholar 

  7. Nestler, E. J. (2004) Molecular mechanisms of drug addiction. Neuropharmacology 47(Suppl 1), 24–32.

    Article  PubMed  CAS  Google Scholar 

  8. Everitt, B. J., Belin, D., Economidou, D., Pelloux, Y., Dalley, J. W. & Robbins, T. W. (2008) Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci 363, 3125–3135.

    Article  PubMed  Google Scholar 

  9. Everitt, B. J. & Robbins, T. W. (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8, 1481–1489.

    Article  PubMed  CAS  Google Scholar 

  10. Epstein, D. H., Preston, K. L., Stewart, J. & Shaham, Y. (2006) Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacology (Berl) 189, 1–16.

    Article  CAS  Google Scholar 

  11. Sanchez, C. J. & Sorg, B. A. (2001) Conditioned fear stimuli reinstate cocaine-induced conditioned place preference. Brain Res 908, 86–92.

    Article  PubMed  CAS  Google Scholar 

  12. Stewart, J. (2000) Pathways to relapse: the neurobiology of drug- and stress-induced relapse to drug-taking. J Psychiatry Neurosci 25, 125–136.

    PubMed  CAS  Google Scholar 

  13. Wang, J., Fang, Q., Liu, Z. & Lu, L. (2006) Region-specific effects of brain corticotropin-releasing factor receptor type 1 blockade on footshock-stress- or drug-priming-induced reinstatement of morphine conditioned place preference in rats. Psychopharmacology (Berl) 185, 19–28.

    Article  CAS  Google Scholar 

  14. Wise, R. A. (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5, 483–494.

    Article  PubMed  CAS  Google Scholar 

  15. Bretaud, S., Li, Q., Lockwood, B. L., Kobayashi, K., Lin, E. & Guo, S. (2007) A choice behavior for morphine reveals experience-dependent drug preference and underlying neural substrates in developing larval zebrafish. Neuroscience 146, 1109–1116.

    Article  PubMed  CAS  Google Scholar 

  16. Darland, T. & Dowling, J. E. (2001) Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci USA 98, 11691–11696.

    Article  PubMed  CAS  Google Scholar 

  17. Kily, L. J., Cowe, Y. C., Hussain, O., Patel, S., McElwaine, S., Cotter, F. E. & Brennan, C. H. (2008) Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways. J Exp Biol 211, 1623–1634.

    Article  PubMed  CAS  Google Scholar 

  18. Ninkovic, J., Folchert, A., Makhankov, Y. V., Neuhauss, S. C., Sillaber, I., Straehle, U. & Bally-Cuif, L. (2006) Genetic identification of AChE as a positive modulator of addiction to the psychostimulant D-amphetamine in zebrafish. J Neurobiol 66, 463–475.

    Article  PubMed  CAS  Google Scholar 

  19. Ninkovic, J. & Bally-Cuif, L. (2006) The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods 39, 262–274.

    Article  PubMed  CAS  Google Scholar 

  20. Kelley, A. E. (2004) Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 44, 161–179.

    Article  PubMed  CAS  Google Scholar 

  21. Rink, E. & Wullimann, M. F. (2002) Connections of the ventral telencephalon and tyrosine hydroxylase distribution in the zebrafish brain (Danio rerio) lead to identification of an ascending dopaminergic system in a teleost. Brain Res Bull 57, 385–387.

    Article  PubMed  CAS  Google Scholar 

  22. Peitsaro, N., Kaslin, J., Anichtchik, O. V. & Panula, P. (2003) Modulation of the histaminergic system and behaviour by alpha-fluoromethylhistidine in zebrafish. J Neurochem 86, 432–441.

    Article  PubMed  CAS  Google Scholar 

  23. Portavella, M., Vargas, J. P., Torres, B. & Salas, C. (2002) The effects of telencephalic pallial lesions on spatial, temporal, and emotional learning in goldfish. Brain Res Bull 57, 397–399.

    Article  PubMed  CAS  Google Scholar 

  24. Levkowitz, G., Zeller, J., Sirotkin, H. I., French, D., Schilbach, S., Hashimoto, H., Hibi, M., Talbot, W. S. & Rosenthal, A. (2003) Zinc finger protein too few controls the development of monoaminergic neurons. Nat Neurosci 6, 28–33.

    Article  PubMed  CAS  Google Scholar 

  25. Rink, E. & Guo, S. (2004) The too few mutant selectively affects subgroups of monoaminergic neurons in the zebrafish forebrain. Neuroscience 127, 147–154.

    Article  PubMed  CAS  Google Scholar 

  26. Behra, M., Cousin, X., Bertrand, C., Vonesch, J. L., Biellmann, D., Chatonnet, A. & Strahle, U. (2002) Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nat Neurosci 5, 111–118.

    Article  PubMed  CAS  Google Scholar 

  27. Lieschke, G. J. & Currie, P. D. (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8, 353–367.

    Article  PubMed  CAS  Google Scholar 

  28. Baraban, S. C., Dinday, M. T., Castro, P. A., Chege, S., Guyenet, S. & Taylor, M. R. (2007) A large-scale mutagenesis screen to identify seizure-resistant zebrafish. Epilepsia 48, 1151–1157.

    Article  PubMed  Google Scholar 

  29. DeBruyne, J., Hurd, M. W., Gutierrez, L., Kaneko, M., Tan, Y., Wells, D. E. & Cahill, G. M. (2004) Isolation and phenogenetics of a novel circadian rhythm mutant in zebrafish. J Neurogenet 18, 403–428.

    Article  PubMed  CAS  Google Scholar 

  30. Muto, A., Orger, M. B., Wehman, A. M., Smear, M. C., Kay, J. N., Page-McCaw, P. S., Gahtan, E., Xiao, T., Nevin, L. M., Gosse, N. J. et al. (2005) Forward genetic analysis of visual behavior in zebrafish. PLoS Genet 1, e66.

    Article  PubMed  Google Scholar 

  31. Renier, C., Faraco, J. H., Bourgin, P., Motley, T., Bonaventure, P., Rosa, F. & Mignot, E. (2007) Genomic and functional conservation of sedative-hypnotic targets in the zebrafish. Pharmacogenet Genomics 17, 237–253.

    Article  PubMed  CAS  Google Scholar 

  32. Westerfield, M. (1995) The Zebrafish Book: Guide for the Laboratory Use of Zebrafish (Danio rerio). 3rd ed. Oregon, University of Oregon Press.

    Google Scholar 

  33. Stephens, D. N. & Duka, T. (2008) Review. Cognitive and emotional consequences of binge drinking: role of amygdala and prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 363, 3169–3179.

    Article  PubMed  Google Scholar 

  34. Fiorillo, C. D. & Williams, J. T. (2000) Cholinergic inhibition of ventral midbrain dopamine neurons. J Neurosci 20, 7855–7860.

    PubMed  CAS  Google Scholar 

  35. Mansvelder, H. D. & McGehee, D. S. (2002) Cellular and synaptic mechanisms of nicotine addiction. J Neurobiol 53, 606–617.

    Article  PubMed  CAS  Google Scholar 

  36. de Rover, M., Lodder, J. C., Kits, K. S., Schoffelmeer, A. N. & Brussaard, A. B. (2002) Cholinergic modulation of nucleus accumbens medium spiny neurons. Eur J Neurosci 16, 2279–2290.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Brennan, C.H., Parmar, A., Kily, L.K., Ananthathevan, A., Doshi, A., Patel, S. (2011). Conditioned Place Preference Models of Drug Dependence and Relapse to Drug Seeking: Studies with Nicotine and Ethanol. In: Kalueff, A., Cachat, J. (eds) Zebrafish Models in Neurobehavioral Research. Neuromethods, vol 52. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-922-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-922-2_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-921-5

  • Online ISBN: 978-1-60761-922-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics