Conditioned Place Preference Models of Drug Dependence and Relapse to Drug Seeking: Studies with Nicotine and Ethanol

  • Caroline H. Brennan
  • Amit Parmar
  • Layla K.M. Kily
  • Arani Ananthathevan
  • Arti Doshi
  • Salma Patel
Part of the Neuromethods book series (NM, volume 52)


Addiction is a complex psychiatric disorder characterised by a spectrum of compulsive drug-seeking behaviours and a persistent tendency to relapse (return to drug taking) even after prolonged periods of abstinence. The most commonly used models for the study of drug reward and dependence involve drug self-administration paradigms in mice, rats or monkeys. However, assays using drug-induced conditioned place preference (CPP) have become increasingly popular due in part to the non-invasive and simple nature of the procedure. Using self-administration and conditioned place preference assays we and others have shown that zebrafish show reinforcement responses to common drugs of abuse including ethanol, nicotine, amphetamine, cocaine and opiates and are thus a suitable model for analysis of factors affecting ‘reward’. Our work reviewed here further demonstrates that on prolonged exposure to nicotine or ethanol, zebrafish show persistent drug seeking in the face of adverse stimuli, and that drug seeking can be reinstated following extinction using stimuli that induce reinstatement in mammalian models and relapse in humans. Thus our work supports the use of zebrafish as a model system for the study of genetic/molecular mechanisms underlying vulnerability to drug dependence and addiction.

Key words

Dependence conditioned place preference nicotine ethanol zebrafish reinstatement 


  1. 1.
    Mueller, D., Perdikaris, D. & Stewart, J. (2002) Persistence and drug-induced reinstatement of a morphine-induced conditioned place preference. Behav Brain Res 136, 389–397.PubMedCrossRefGoogle Scholar
  2. 2.
    Mueller, D. & Stewart, J. (2000) Cocaine-induced conditioned place preference: reinstatement by priming injections of cocaine after extinction. Behav Brain Res 115, 39–47.PubMedCrossRefGoogle Scholar
  3. 3.
    O’Brien, C. P. & Gardner, E. L. (2005) Critical assessment of how to study addiction and its treatment: human and non-human animal models. Pharmacol Ther 108, 18–58.PubMedCrossRefGoogle Scholar
  4. 4.
    Tzschentke, T. M. (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12, 227–462.PubMedCrossRefGoogle Scholar
  5. 5.
    Stewart, J. (2003) Stress and relapse to drug seeking: studies in laboratory animals shed light on mechanisms and sources of long-term vulnerability. Am J Addict 12, 1–17.PubMedGoogle Scholar
  6. 6.
    Tzschentke, T. M. (1998) Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 56, 613–672.PubMedCrossRefGoogle Scholar
  7. 7.
    Nestler, E. J. (2004) Molecular mechanisms of drug addiction. Neuropharmacology 47(Suppl 1), 24–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Everitt, B. J., Belin, D., Economidou, D., Pelloux, Y., Dalley, J. W. & Robbins, T. W. (2008) Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci 363, 3125–3135.PubMedCrossRefGoogle Scholar
  9. 9.
    Everitt, B. J. & Robbins, T. W. (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8, 1481–1489.PubMedCrossRefGoogle Scholar
  10. 10.
    Epstein, D. H., Preston, K. L., Stewart, J. & Shaham, Y. (2006) Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacology (Berl) 189, 1–16.CrossRefGoogle Scholar
  11. 11.
    Sanchez, C. J. & Sorg, B. A. (2001) Conditioned fear stimuli reinstate cocaine-induced conditioned place preference. Brain Res 908, 86–92.PubMedCrossRefGoogle Scholar
  12. 12.
    Stewart, J. (2000) Pathways to relapse: the neurobiology of drug- and stress-induced relapse to drug-taking. J Psychiatry Neurosci 25, 125–136.PubMedGoogle Scholar
  13. 13.
    Wang, J., Fang, Q., Liu, Z. & Lu, L. (2006) Region-specific effects of brain corticotropin-releasing factor receptor type 1 blockade on footshock-stress- or drug-priming-induced reinstatement of morphine conditioned place preference in rats. Psychopharmacology (Berl) 185, 19–28.CrossRefGoogle Scholar
  14. 14.
    Wise, R. A. (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5, 483–494.PubMedCrossRefGoogle Scholar
  15. 15.
    Bretaud, S., Li, Q., Lockwood, B. L., Kobayashi, K., Lin, E. & Guo, S. (2007) A choice behavior for morphine reveals experience-dependent drug preference and underlying neural substrates in developing larval zebrafish. Neuroscience 146, 1109–1116.PubMedCrossRefGoogle Scholar
  16. 16.
    Darland, T. & Dowling, J. E. (2001) Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci USA 98, 11691–11696.PubMedCrossRefGoogle Scholar
  17. 17.
    Kily, L. J., Cowe, Y. C., Hussain, O., Patel, S., McElwaine, S., Cotter, F. E. & Brennan, C. H. (2008) Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways. J Exp Biol 211, 1623–1634.PubMedCrossRefGoogle Scholar
  18. 18.
    Ninkovic, J., Folchert, A., Makhankov, Y. V., Neuhauss, S. C., Sillaber, I., Straehle, U. & Bally-Cuif, L. (2006) Genetic identification of AChE as a positive modulator of addiction to the psychostimulant D-amphetamine in zebrafish. J Neurobiol 66, 463–475.PubMedCrossRefGoogle Scholar
  19. 19.
    Ninkovic, J. & Bally-Cuif, L. (2006) The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods 39, 262–274.PubMedCrossRefGoogle Scholar
  20. 20.
    Kelley, A. E. (2004) Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 44, 161–179.PubMedCrossRefGoogle Scholar
  21. 21.
    Rink, E. & Wullimann, M. F. (2002) Connections of the ventral telencephalon and tyrosine hydroxylase distribution in the zebrafish brain (Danio rerio) lead to identification of an ascending dopaminergic system in a teleost. Brain Res Bull 57, 385–387.PubMedCrossRefGoogle Scholar
  22. 22.
    Peitsaro, N., Kaslin, J., Anichtchik, O. V. & Panula, P. (2003) Modulation of the histaminergic system and behaviour by alpha-fluoromethylhistidine in zebrafish. J Neurochem 86, 432–441.PubMedCrossRefGoogle Scholar
  23. 23.
    Portavella, M., Vargas, J. P., Torres, B. & Salas, C. (2002) The effects of telencephalic pallial lesions on spatial, temporal, and emotional learning in goldfish. Brain Res Bull 57, 397–399.PubMedCrossRefGoogle Scholar
  24. 24.
    Levkowitz, G., Zeller, J., Sirotkin, H. I., French, D., Schilbach, S., Hashimoto, H., Hibi, M., Talbot, W. S. & Rosenthal, A. (2003) Zinc finger protein too few controls the development of monoaminergic neurons. Nat Neurosci 6, 28–33.PubMedCrossRefGoogle Scholar
  25. 25.
    Rink, E. & Guo, S. (2004) The too few mutant selectively affects subgroups of monoaminergic neurons in the zebrafish forebrain. Neuroscience 127, 147–154.PubMedCrossRefGoogle Scholar
  26. 26.
    Behra, M., Cousin, X., Bertrand, C., Vonesch, J. L., Biellmann, D., Chatonnet, A. & Strahle, U. (2002) Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nat Neurosci 5, 111–118.PubMedCrossRefGoogle Scholar
  27. 27.
    Lieschke, G. J. & Currie, P. D. (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8, 353–367.PubMedCrossRefGoogle Scholar
  28. 28.
    Baraban, S. C., Dinday, M. T., Castro, P. A., Chege, S., Guyenet, S. & Taylor, M. R. (2007) A large-scale mutagenesis screen to identify seizure-resistant zebrafish. Epilepsia 48, 1151–1157.PubMedCrossRefGoogle Scholar
  29. 29.
    DeBruyne, J., Hurd, M. W., Gutierrez, L., Kaneko, M., Tan, Y., Wells, D. E. & Cahill, G. M. (2004) Isolation and phenogenetics of a novel circadian rhythm mutant in zebrafish. J Neurogenet 18, 403–428.PubMedCrossRefGoogle Scholar
  30. 30.
    Muto, A., Orger, M. B., Wehman, A. M., Smear, M. C., Kay, J. N., Page-McCaw, P. S., Gahtan, E., Xiao, T., Nevin, L. M., Gosse, N. J. et al. (2005) Forward genetic analysis of visual behavior in zebrafish. PLoS Genet 1, e66.PubMedCrossRefGoogle Scholar
  31. 31.
    Renier, C., Faraco, J. H., Bourgin, P., Motley, T., Bonaventure, P., Rosa, F. & Mignot, E. (2007) Genomic and functional conservation of sedative-hypnotic targets in the zebrafish. Pharmacogenet Genomics 17, 237–253.PubMedCrossRefGoogle Scholar
  32. 32.
    Westerfield, M. (1995) The Zebrafish Book: Guide for the Laboratory Use of Zebrafish (Danio rerio). 3rd ed. Oregon, University of Oregon Press.Google Scholar
  33. 33.
    Stephens, D. N. & Duka, T. (2008) Review. Cognitive and emotional consequences of binge drinking: role of amygdala and prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 363, 3169–3179.PubMedCrossRefGoogle Scholar
  34. 34.
    Fiorillo, C. D. & Williams, J. T. (2000) Cholinergic inhibition of ventral midbrain dopamine neurons. J Neurosci 20, 7855–7860.PubMedGoogle Scholar
  35. 35.
    Mansvelder, H. D. & McGehee, D. S. (2002) Cellular and synaptic mechanisms of nicotine addiction. J Neurobiol 53, 606–617.PubMedCrossRefGoogle Scholar
  36. 36.
    de Rover, M., Lodder, J. C., Kits, K. S., Schoffelmeer, A. N. & Brussaard, A. B. (2002) Cholinergic modulation of nucleus accumbens medium spiny neurons. Eur J Neurosci 16, 2279–2290.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Caroline H. Brennan
    • 1
  • Amit Parmar
    • 1
  • Layla K.M. Kily
    • 1
  • Arani Ananthathevan
    • 1
  • Arti Doshi
    • 1
  • Salma Patel
    • 1
  1. 1.Biological and Experimental Psychology GroupSchool of Biological and Chemical Sciences, Queen Mary University of LondonLondonUK

Personalised recommendations