Skip to main content

Genetics of Ethanol-Related Behaviors

  • Protocol
  • First Online:
Zebrafish Models in Neurobehavioral Research

Part of the book series: Neuromethods ((NM,volume 52))

Abstract

Alcoholism is a disorder that affects human beings during every stage of the lifespan. Many animal models have been developed to study alcoholism, including those used to assess alcohol preference, the effects of alcohol withdrawal, and the development of tolerance. Knowledge gained from multiple studies on twins has supported a strong genetic basis for predisposition to alcohol. Our laboratory has chosen to investigate the use of the zebrafish, a vertebrate with an accessible and 75% sequenced genome as a possible model for ethanol research. We have used a simple, noninvasive evaluation of swimming behavior in which we measured the distance between each fish and its nearest neighbor to gage the response of the central nervous system to pharmacologically relevant doses of acute and chronic ethanol. In the acute studies, we have shown that WT (wild type) zebrafish show a dose dependent increase in nearest neighbor distance. Conversely, another strain, the LFS (long-fin striped) zebrafish demonstrated a biphasic response to acute alcohol exposure in that change from baseline was larger at the 0.5 than at the 1.0% (v/v) ethanol concentration. A third strain, the BLF (blue longfin) zebrafish, showed no apparent response to acute alcohol exposure. Subsequent studies showed that behavioral response to ethanol in BLF zebrafish was age dependent, as nearest neighbor distance was increased in juvenile but not in adult fish. Investigations using chronic ethanol exposure in zebrafish also support differential strain sensitivity to ethanol and the capacity to develop tolerance. Ethanol-induced alterations in gender were also investigated. Gender does not appear to be a factor in acute sensitivity to ethanol. Chronic ethanol treatment demonstrated that female WT zebrafish are preferentially affected compared to males of the WT strain. The results of chronic studies suggest that the zebrafish may be a useful model for dissecting the rather complex differential effects of ethanol on gender. Taken together, these studies demonstrate with a simple noninvasive behavioral test that zebrafish of three strains demonstrate differential sensitivity to ethanol and suggest that zebrafish are useful models in sorting out the genetic factors concerning the mechanisms of ethanol’s actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Institute on Alcohol Abuse and Alcoholism (US), National Institutes of Health (US) and United States. Department of Health and Human Services. (2006) National Epidemiologic Survey on Alcohol and Related Conditions. Rockville, MD, US Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism.

    Google Scholar 

  2. Stratton, K. R., Howe, C. J. & Battaglia, F. C., Institute of Medicine (US). Division of Biobehavioral Sciences and Mental Disorders. Committee to Whom It May Concern: It May Concern: Study Fetal Alcohol Syndrome & National Institute on Alcohol Abuse and Alcoholism (US) (1996) Fetal Alcohol Syndrome: Diagnosis, Epidemiology, Prevention, and Treatment. Summary. Washington, DC, National Academy Press.

    Google Scholar 

  3. National Institute on Alcohol Abuse and Alcoholism (US) (2008) Alcohol Research: A Lifespan Perspective. Rockville, MD, US Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism.

    Google Scholar 

  4. Heath, A., Kk, B., Paf, M., Dinwiddie, S., Ws, S., Bierut, L., Statham, D., Dunne, M., Jb, W. & Martin, N. (1997) Genetic and environmental contributions to alcohol dependence risk in a national twin sample: consistency of findings in women and men. Psychol Med 27, 1381–1396.

    Article  PubMed  CAS  Google Scholar 

  5. Heath, A. C. & Martin, N. G. (1994) Genetic influences on alcohol consumption patterns and problem drinking: results from the Australian NH&MRC twin panel follow-up survey. Ann N Y Acad Sci 708, 72–85.

    Article  PubMed  CAS  Google Scholar 

  6. Kendler, K. S., Neale, M. C., Heath, A. C., Kessler, R. C. & Eaves, L. J. (1994) A twin-family study of alcoholism in women. Am J Psychiatry 151, 707–715.

    PubMed  CAS  Google Scholar 

  7. Prescott, C. A. & Kendler, K. S. (1999) Genetic and environmental contributions to alcohol abuse and dependence in a population-based. Am J Psychiatry 156, 7p.

    Google Scholar 

  8. Goist, K. C., Jr. & Sutker, P. B. (1985) Acute alcohol intoxication and body composition in women and men. Pharmacol Biochem Behav 22, 811–814.

    Article  PubMed  Google Scholar 

  9. Jones, B. & Jones, M. (1976) Women and Alcohol. Intoxication, metabolism, and the menstrual cycle. In Greenblatt, M. & Ma, S. (Eds.) Alcoholism Problems in Women and Children. New York, NY, Grune & Sttratton.

    Google Scholar 

  10. Ashley, M. J., Olin, J. S., Le Riche, W. H., Kornaczewski, A., Schmidt, W. & Rankin, J. G. (1977) Morbidity in alcoholics. Evidence for accelerated development of physical disease in women. Arch Int Med 137, 883–887.

    Article  CAS  Google Scholar 

  11. Blume, S. B. (1986) Women and alcohol. A review. JAMA 256, 1467–1470.

    Article  PubMed  CAS  Google Scholar 

  12. Colantoni, A., Idilman, R., de Maria, N., La Paglia, N., Belmonte, J., Wezeman, F., Emanuele, N., van Thiel, D. H., Kovacs, E. J. & Emanuele, M. A. (2003) Hepatic apoptosis and proliferation in male and female rats fed alcohol: role of cytokines. Alcohol Clin Exp Res 27, 1184–1189.

    Article  PubMed  CAS  Google Scholar 

  13. Dlugos, C. A. (2006b) Smooth endoplasmic reticulum dilation and degeneration in Purkinje neuron dendrites of aging ethanol-fed female rats. Cerebellum 5, 155–162.

    Article  PubMed  CAS  Google Scholar 

  14. Klintsova, A. Y., Cowell, R. M., Swain, R. A., Napper, R. M., Goodlett, C. R. & Greenough, W. T. (1998) Therapeutic effects of complex motor training on motor performance deficits induced by neonatal binge-like alcohol exposure in rats. I. Behavioral results. Brain Res 800, 48–61.

    Article  PubMed  CAS  Google Scholar 

  15. Hashimoto, J. G. & Wiren, K. M. (2008) Neurotoxic consequences of chronic alcohol withdrawal: expression profiling reveals importance of gender over withdrawal severity. Neuropsychopharmacology 33, 1084–1096.

    Article  PubMed  CAS  Google Scholar 

  16. White, A. M., Bae, J. G., Truesdale, M. C., Ahmad, S., Wilson, W. A. & Swartzwelder, H. S. (2002) Chronic-intermittent ethanol exposure during adolescence prevents normal developmental changes in sensitivity to ethanol-induced motor impairments. Alcohol Clin Exp Res 26, 960–968.

    Article  PubMed  CAS  Google Scholar 

  17. White, A. M., Ghia, A. J., Levin, E. D. & Swartzwelder, H. S. (2000) Binge pattern ethanol exposure in adolescent and adult rats: differential impact on subsequent responsiveness to ethanol. Alcohol Clin Exp Res 24, 1251–1256.

    Article  PubMed  CAS  Google Scholar 

  18. Breslow, R. A., Faden, V. B. & Smothers, B. (2003) Alcohol consumption by elderly Americans. J Stud Alcohol 64, 884–892.

    PubMed  Google Scholar 

  19. Lovinger, D. M. & Crabbe, J. C. (2005) Laboratory models of alcoholism: treatment target identification and insight into mechanisms. Nat Neurosci 8, 1471–1480.

    Article  PubMed  CAS  Google Scholar 

  20. Tabakoff, B. & Hoffman, P. L. (2000) Animal models in alcohol research. Alcohol Res Health J Natl Inst Alcohol Abuse Alcohol 24, 77–84.

    CAS  Google Scholar 

  21. Lithgow, G. J. & Andersen, J. K. (2005) Models of oxidative stress in the biology of aging. Drug Discov Today Dis Models 2, 273–277.

    Article  CAS  Google Scholar 

  22. Scholz, H., Franz, M. & Heberlein, U. (2005) The hangover gene defines a stress pathway required for ethanol tolerance development. Nature 436, 845–847.

    Article  PubMed  CAS  Google Scholar 

  23. Wolf, F. W. & Heberlein, U. (2003) Invertebrate models of drug abuse. J Neurobiol 54, 161–178.

    Article  PubMed  CAS  Google Scholar 

  24. Davies, A. G., Pierce-Shimomura, J. T., Kim, H., Vanhoven, M. K., Thiele, T. R., Bonci, A., Bargmann, C. I. & McIntire, S. L. (2003) A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115, 655–666.

    Article  PubMed  CAS  Google Scholar 

  25. Corl, A. B., Rodan, A. R. & Heberlein, U. (2005) Insulin signaling in the nervous system regulates ethanol intoxication in Drosophila melanogaster. Nat Neurosci 8, 18–19.

    Article  PubMed  CAS  Google Scholar 

  26. Holley, S. A., Geisler, R. & Nusslein-Volhard, C. (2000) Control of her1 expression during zebrafish somitogenesis by a Delta-dependent oscillator and an independent wave-front activity. Genes Dev 14, 1678–1690.

    Google Scholar 

  27. Fishman, M. C. (2001) Genomics. Zebrafish – the canonical vertebrate. Science 294, 1290–1291.

    Article  PubMed  CAS  Google Scholar 

  28. Nüsslein-Volhard, C. & Dahm, R. (2002) Zebrafish: A Practical Approach. Oxford, Oxford University Press.

    Google Scholar 

  29. Rubinstein, A. L. (2003) Zebrafish: from disease modeling to drug discovery. Curr Opin Drug Discov Dev 6, 218–223.

    CAS  Google Scholar 

  30. Boehmler, W., Carr, T., Thisse, C., Thisse, B., Canfield, V. A. & Levenson, R. (2007) D4 dopamine receptor genes of zebrafish and effects of the antipsychotic clozapine on larval swimming behaviour. Genes Brain Behav 6, 155–166.

    Article  PubMed  CAS  Google Scholar 

  31. Giacomini, N. J., Rose, B., Kobayashi, K. & Guo, S. (2006) Antipsychotics produce locomotor impairment in larval zebrafish. Neurotoxicol Teratol 28, 245–250.

    Article  PubMed  CAS  Google Scholar 

  32. Parker, B. & Connaughton, V. P. (2007) Effects of nicotine on growth and development in larval zebrafish. Zebrafish 4, 59–68.

    Article  PubMed  CAS  Google Scholar 

  33. Langheinrich, U., Hennen, E., Stott, G. & Vacun, G. (2002) Zebrafish as a model organism for the identification and characterization of drugs and genes affecting p53 signaling. Curr Biol 12, 2023–2028.

    Article  PubMed  CAS  Google Scholar 

  34. Darland, T. & Dowling, J. E. (2001) Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci USA 98, 11691–11696.

    Article  PubMed  CAS  Google Scholar 

  35. Farber, S. A., Pack, M., Ho, S. Y., Johnson, I. D., Wagner, D. S., Dosch, R., Mullins, M. C., Hendrickson, H. S., Hendrickson, E. K. & Halpern, M. E. (2001) Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science 292, 1385–1388.

    Article  PubMed  CAS  Google Scholar 

  36. Bilotta, J., Barnett, J. A., Hancock, L. & Saszik, S. (2004) Ethanol exposure alters zebrafish development: a novel model of fetal alcohol syndrome. Neurotoxicol Teratol 26, 737–743.

    Article  PubMed  CAS  Google Scholar 

  37. Bilotta, J., Saszik, S., Givin, C. M., Hardesty, H. R. & Sutherland, S. E. (2002) Effects of embryonic exposure to ethanol on zebrafish visual function. Neurotoxicol Teratol 24, 759–766.

    Article  PubMed  CAS  Google Scholar 

  38. Blader, P. & Strahle, U. (1998) Ethanol impairs migration of the prechordal plate in the zebrafish embryo. Dev Biol 201, 185–201.

    Article  PubMed  CAS  Google Scholar 

  39. Carvan, M. J., 3rd, Loucks, E., Weber, D. N. & Williams, F. E. (2004) Ethanol effects on the developing zebrafish: neurobehavior and skeletal morphogenesis. Neurotoxicol Teratol 26, 757–768.

    Article  PubMed  CAS  Google Scholar 

  40. Dlugos, C. & Rabin, R. (2007) Ocular deficits associated with alcohol exposure during zebrafish development. J Comp Neurol 502, 497–506.

    Article  PubMed  CAS  Google Scholar 

  41. Gerlai, R., Lahav, M., Guo, S. & Rosenthal, A. (2000) Drinks like a fish: zebra fish Danio rerio as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67, 773–782.

    Article  PubMed  CAS  Google Scholar 

  42. Lockwood, B., Bjerke, S., Kobayashi, K. & Guo, S. (2004) Acute effects of alcohol on larval zebrafish: a genetic system for large-scale screening. Pharmacol Biochem Behav 77, 647–654.

    Article  PubMed  CAS  Google Scholar 

  43. Ryback, R. S. (1970) The use of fish, especially goldfish, in alcohol research. Quart J Stud Alcohol 31, 162–166.

    PubMed  CAS  Google Scholar 

  44. Ryback, R., Percarpio, B. & Vitale, J. (1969) Equilibration and metabolism of ethanol in the goldfish. Nature 222, 1068–1070.

    Article  PubMed  CAS  Google Scholar 

  45. Dlugos, C. A. & Rabin, R. A. (2003) Ethanol effects on three strains of zebrafish: model system for genetic investigations. Pharmacol Biochem Behav 74, 471–480.

    Article  PubMed  CAS  Google Scholar 

  46. Scobie, S. R. & Bliss, D. K. (1974) Ethyl alcohol: relationships to memory for aversive learning in goldfish (Carassius auratus). J Comp Physiol Psychol 86, 867–874.

    Article  PubMed  CAS  Google Scholar 

  47. Rayes, A. E., Ryback, R. S. & Ingle, D. J. (1968) The effect of alcohol on aggression in Betta splendens. Commun Behav Biol 2, 141–146.

    Google Scholar 

  48. Peeke, H. V., Peeke, S. C., Avis, H. H. & Ellman, G. (1975) Alcohol, habituation and the patterning of aggressive responses in a cichlid fish. Pharmacol Biochem Behav 3, 1031–1036.

    Article  PubMed  CAS  Google Scholar 

  49. Gerlai, R., Lee, V. & Blaser, R. (2006) Effects of acute and chronic ethanol exposure on the behavior of adult zebrafish Danio rerio. Pharmacol Biochem Behav 85, 752–761.

    Article  PubMed  CAS  Google Scholar 

  50. Gerlai, R., Ahmad, F. & Prajapati, S. (2008) Differences in acute alcohol-induced behavioral responses among zebrafish populations. Alcohol Clin Exp Res 32, 1763–1773.

    Article  PubMed  Google Scholar 

  51. Ruhl, N. & McRobert, S. P. (2005) The effect of sex and shoal size on shoaling behaviour in Danio rerio. J Fish Biol 67, 1318–1326.

    Article  Google Scholar 

  52. Damodaran, S., Dlugos, C. A., Wood, T. D. & Rabin, R. A. (2006) Effects of chronic ethanol administration on brain protein levels: a proteomic investigation using 2-D DIGE system. Eur J Pharmacol 547, 75–82.

    Article  PubMed  CAS  Google Scholar 

  53. Chester, J. A., Blose, A. M. & Froehlich, J. C. (2004) Acoustic startle reactivity during acute alcohol withdrawal in rats that differ in genetic predisposition toward alcohol drinking: effect of stimulus characteristics. Alcohol Clin Exp Res 28, 677–687.

    Article  PubMed  Google Scholar 

  54. Grillon, C., Sinha, R., Ameli, R. & O’malley, S. S. (2000) Effects of alcohol on baseline startle and prepulse inhibition in young men at risk for alcoholism and/or anxiety disorders. J Stud Alcohol 61, 46–54.

    PubMed  CAS  Google Scholar 

  55. Westerfield, M. (2000) The Zebrafish Book. 4th ed. Eugene, Oregon, University of Oregon Press.

    Google Scholar 

  56. Eaton, R. & Hackett, J. (1984) The role of the Mauthner cell in fast-starts involving escape in teleost fishes. In Eaton, R. (Ed.) Neural Mechanisms of Startle Behavior. New York, NY, Plenum Press.

    Google Scholar 

  57. Tresnake, L. (1981) The long-finned zebra Danio. Trop Fish Hobby 29, 43–56.

    Google Scholar 

  58. Itzkowitz, M. & Iovine, M. K. (2007) Single gene mutations causing exaggerated fins also cause non-genetic changes in the display behavior of male zebrafish. Behaviour 144, 787–795.

    Article  Google Scholar 

  59. Kim, S. N., Rhee, J. H., Song, Y. H., Park, D. Y., Hwang, M., Lee, S. L., Kim, J. E., Gim, B. S., Yoon, J. H., Kim, Y. J. & Kim-Ha, J. (2005) Age-dependent changes of gene expression in the Drosophila head. Neurobiol Aging 26, 1083–1091.

    Article  PubMed  Google Scholar 

  60. Rico, E. P., Rosemberg, D. B., Dias, R. D., Bogo, M. R. & Bonan, C. D. (2007) Ethanol alters acetylcholinesterase activity and gene expression in zebrafish brain. Toxicol Lett 174, 25–30.

    Article  PubMed  CAS  Google Scholar 

  61. Dlugos, C. A., Brown, S. & Rabin, R. A. (2010) Gender differences in ethanol-induced behavioral sensitivity in zebrafish. Alcohol.

    Google Scholar 

  62. Orger, M. B., Gahtan, E., Muto, A., Page-McCaw, P., Smear, M. C. & Baier, H. (2004) Behavioral screening assays in zebrafish. Methods Cell Biol 77, 53–68.

    Article  PubMed  Google Scholar 

  63. Glowa, J. & Hansen, C. (1993) Differences in response to an acoustic startle stimulus among forty-six rat strains. Behav Genet 24, 79–84.

    Article  Google Scholar 

  64. American Psychiatric Association and American Psychiatric association. Task Force on DSM-IV. (1994) Diagnostic and Statistical Manual of Mental Disorders: DSM-IV. Washington, DC, American Psychiatric Association.

    Google Scholar 

  65. Tabakoff, B., Cornell, N. & Hoffman, P. L. (1986) Alcohol tolerance. Ann Emerg Med 15, 1005–1012.

    Article  PubMed  CAS  Google Scholar 

  66. Tabakoff, B. & Hoffman, P. L. (1988) Tolerance and the etiology of alcoholism: hypothesis and mechanism. Alcohol Clin Exp Res 12, 184–186.

    Article  PubMed  CAS  Google Scholar 

  67. Park, B., Jeong, S. K., Lee, W. S., Seong, J. K. & Paik, Y. K. (2004) A simple pattern classification method for alcohol-responsive proteins that are differentially expressed in mouse brain. Proteomics 4, 3369–3375.

    Article  PubMed  CAS  Google Scholar 

  68. Lewohl, J. M., van Dyk, D. D., Craft, G. E., Innes, D. J., Mayfield, R. D., Cobon, G., Harris, R. A. & Dodd, P. R. (2004) The application of proteomics to the human alcoholic brain. Ann N Y Acad Sci 1025, 14–26.

    Article  PubMed  CAS  Google Scholar 

  69. Le, A. D. & Kiianmaa, K. (1988) Characteristics of ethanol tolerance in alcohol drinking (AA) and alcohol avoiding (ANA) Rats. Psychopharmacology 94, 479–483.

    Article  PubMed  CAS  Google Scholar 

  70. Dlugos, C. A. (2006a) Ethanol-related smooth endoplasmic reticulum dilation in Purkinje dendrites of aging rats. [Erratum appears in Alcohol Clin Exp Res. 2006 Jun;30(6):1091]. Alcohol Clin Exp Res 30, 883–891.

    Article  PubMed  CAS  Google Scholar 

  71. Dlugos, C. A. (2008) Ethanol-related increases in degenerating bodies in the Purkinje neuron dendrites of aging rats. Brain Res 1221, 98–107.

    Article  PubMed  CAS  Google Scholar 

  72. Harper, C. & Kril, J. (1989) Patterns of neuronal loss in the cerebral cortex in chronic alcoholic patients. J Neurol Sci 92, 81–89.

    Article  PubMed  CAS  Google Scholar 

  73. Kril, J. J. & Halliday, G. M. (1999) Brain shrinkage in alcoholics: a decade on and what have we learned? Prog Neurobiol 58, 381–387.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Richard Rabin, my collaborator, for his help throughout these studies and in preparation of this manuscript. I would also like to acknowledge the participation of Dr. Shereene Brown in the gender studies.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dlugos, C.A. (2011). Genetics of Ethanol-Related Behaviors. In: Kalueff, A., Cachat, J. (eds) Zebrafish Models in Neurobehavioral Research. Neuromethods, vol 52. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-922-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-922-2_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-921-5

  • Online ISBN: 978-1-60761-922-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics