Nicotinic Receptor Systems and Neurobehavioral Function in Zebrafish

  • Edward D. Levin
Part of the Neuromethods book series (NM, volume 52)


Nicotinic acetylcholine receptors appear to be quite ancient phylogenetically and are used in the nervous systems of a great number of species across broad parts of the animal kingdom. They play important roles in a variety of neurobehavioral functions from neuromuscular activation to cognitive function. Nicotinic receptor function is an excellent field in which to assess the potential commonalities of neurobehavioral functions across animal species. Nicotinic receptors are remarkably consistent across species and the behavioral effects of nicotinic treatments have been very well determined in mammals. Since zebrafish are an emerging aquatic model for studying neurobehavioral function, we have determined the effects of nicotine, the prototypic nicotinic agonist as well as nicotinic antagonists on cognitive function, exploratory behavior and stress response in a series of behavioral tests we have developed to reliably index these behavioral functions. The overall hypothesis of this line of investigation was that nicotine would have similar behavioral effects in zebrafish as in mammals when analogous tests of behavioral function are used. As with mammalian species, nicotine significantly improves learning and memory at low to moderate doses in zebrafish with an inverted J-shaped dose-effect function. The nicotine-induced learning improvement in zebrafish is reversed with the nicotinic antagonist mecamylamine and is accompanied by increased brain dopamine metabolite levels, an effect which is also reversed with mecamylamine. Also, as in mammals, nicotine has anxiolytic effects in zebrafish. Nicotine significantly reduces bottom dwelling in the novel tank diving task. This effect is reversed by either α7 or α4β2 nicotinic antagonist coadministration. In many respects nicotine has similar effects in zebrafish as in rodents and humans. These studies point to the value of zebrafish as models of human neurobehavioral function.

Key words

Acetylcholine receptor nicotine nicotinic receptor antagonist nicotinic receptor subtypes spatial learning spatial alternation memory cognitive function stress response anxiolytic drug 3-chambered tank test novel tank test 



This research was funded by the Duke University Superfund Basic Research Center (NIH ES10356) and an unrestricted grant from Philip Morris-USA.


  1. 1.
    Cerutti, D. T. & Levin, E. D. (2006) Cognitive impairment models using complementary species. In Levin, E. D., Buccafusco, J. J. (Eds.) Animal Models of Cognitive Impairment. New York, NY, CRC Press, pp. 315–342.CrossRefGoogle Scholar
  2. 2.
    Levin, E. D. & Cerutti, D. T. (2008) Behavioral neuroscience of zebrafish. In Buccafusco, J. J. (Ed.) Methods of Behavior Analysis in Neuroscience. New York, NY, CRC Press, pp. 293–310.Google Scholar
  3. 3.
    Levin, E. D., Bencan, Z. & Cerutti, D. T. (2007) Anxiolytic effects of nicotine in zebrafish. Physiol Behav 90, 54–58.PubMedCrossRefGoogle Scholar
  4. 4.
    Levin, E. D., McClernon, F. J. & Rezvani, A. H. (2006b) Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification and anatomic localization. Psychopharmacology 184, 523–539.PubMedCrossRefGoogle Scholar
  5. 5.
    Braubach, O. R., Wood, H. D., Gadbois, S., Fine, A. & Croll, R. P. (2009) Olfactory conditioning in the zebrafish (Danio rerio). Behav Brain Res 198, 190–198.PubMedCrossRefGoogle Scholar
  6. 6.
    Colwill, R. M., Raymond, M. P., Ferreira, L. & Escudero, H. (2005) Visual discrimination learning in zebrafish (Danio rerio). Behav Processes 70, 19–31.PubMedCrossRefGoogle Scholar
  7. 7.
    Gerlai, R., Fernandes, Y. & Pereira, T. (2009) Zebrafish (Danio rerio) responds to the animated image of a predator: towards the development of an automated aversive task. Behav Brain Res 201, 318–324.PubMedCrossRefGoogle Scholar
  8. 8.
    Moreira-Santos, M., Donato, C., Lopes, I. & Ribeiro, R. (2008) Avoidance tests with small fish: determination of the median avoidance concentration and of the lowest-observed-effect gradient. Environ Toxicol Chem 27, 1576–1582.PubMedCrossRefGoogle Scholar
  9. 9.
    Xu, X., Scott-Scheiern, T., Kempker, L. & Simons, K. (2007) Active avoidance conditioning in zebrafish (Danio rerio). Neurobiol Learn Mem 87, 72–77.PubMedCrossRefGoogle Scholar
  10. 10.
    Arthur, D. & Levin, E. D. (2001) Spatial and non-spatial discrimination learning in zebrafish (Danio rerio). Anim Cogn 4, 125–131.CrossRefGoogle Scholar
  11. 11.
    Levin, E. D., Chrysanthis, E., Yacisin, K. & Linney, E. (2003) Chlorpyrifos exposure of developing zebrafish: effects on survival and long-term effects on response latency and spatial discrimination. Neurotoxicol Teratol 25, 51–57.PubMedCrossRefGoogle Scholar
  12. 12.
    Eddins, D., Petro, A., Williams, P., Cerutti, D. T. & Levin, E. D. (2009a) Nicotine effects on learning in zebrafish: the role of dopaminergic systems. Psychopharmacology 202, 103–109.PubMedCrossRefGoogle Scholar
  13. 13.
    Levin, E. D. & Chen, E. (2004) Nicotinic involvement in memory function in zebrafish. Neurotoxicol Teratol 26, 731–735.PubMedCrossRefGoogle Scholar
  14. 14.
    Levin, E. D., Limpuangthip, J., Rachakonda, T. & Peterson, M. (2006a) Timing of nicotine effects on learning in zebrafish. Psychopharmacology 184, 547–552.PubMedCrossRefGoogle Scholar
  15. 15.
    Eddins, D., Williams, P., Cerutti, D. T. & Levin, E. D. (2009b) Nicotine effects on learning in zebrafish: the role of dopamine systems. Psychopharmacology 202, 103–109.PubMedCrossRefGoogle Scholar
  16. 16.
    Speedie, N. & Gerlai, R. (2008) Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav Brain Res 188, 168–177.PubMedCrossRefGoogle Scholar
  17. 17.
    Bass, S. L. & Gerlai, R. (2008) Zebrafish (Danio rerio) responds differentially to stimulus fish: the effects of sympatric and allopatric predators and harmless fish. Behav Brain Res 186, 107–117.PubMedCrossRefGoogle Scholar
  18. 18.
    Lopez-Patino, M. A., Yu, L., Cabral, H. & Zhdanova, I. V. (2008) Anxiogenic effects of cocaine withdrawal in zebrafish. Physiol Behav 93, 160–171.PubMedCrossRefGoogle Scholar
  19. 19.
    Egan, R. J., Bergner, C. L., Hart, P. C., Cachat, J. M., Canavello, P. R., Elegante, M. F., Elkhayat, S. I., Bartels, B. K., Tien, A. K., Tien, D. H., Mohnot, S., Beeson, E., Glasgow, E., Amri, H., Zukowska, Z. & Kalueff, A. V. (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205, 38–44.PubMedCrossRefGoogle Scholar
  20. 20.
    Bencan, Z., Sledge, D. & Levin, E. D. (2009) Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacol Biochem Behav 94, 75–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Picciotto, M. R., Brunzell, D. H. & Caldarone, B. J. (2002) Effect of nicotine and nicotinic receptors on anxiety and depression. Neuroreport 13, 1097–1106.PubMedCrossRefGoogle Scholar
  22. 22.
    Gilbert, D. G., Robinson, J. H., Chamberlin, C. L. & Spielberger, C. D. (1989) Effects of smoking/nicotine on anxiety, heart rate, and lateralization of EEG during a stressful movie. Psychophysiology 26, 311–320.PubMedCrossRefGoogle Scholar
  23. 23.
    Brioni, J. D., O’Neill, A. B., Kim, D. J. & Decker, M. W. (1993) Nicotinic receptor agonists exhibit anxiolytic-like effects on the elevated plus-maze test. Eur J Pharmacol 238, 1–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Cheeta, S., Irvine, E. E., Tucci, S., Sandhu, J. & File, S. E. (2001) In: adolescence, female rats are more sensitive to the anxiolytic effect of nicotine than are male rats. Neuropsychopharmacology 25, 601–607.PubMedCrossRefGoogle Scholar
  25. 25.
    Bencan, Z. & Levin, E. D. (2008) The role of α7 and α4β2 nicotinic receptors in the nicotine-induced anxiolytic effect in zebrafish. Physiol Behav 95, 408–412.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Edward D. Levin
    • 1
  1. 1.Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamUSA

Personalised recommendations