Modeling Stress and Anxiety in Zebrafish

  • Jonathan M. Cachat
  • Peter R. Canavello
  • Marco F. Elegante
  • Brett K. Bartels
  • Salem I. Elkhayat
  • Peter C. Hart
  • Anna K. Tien
  • David H. Tien
  • Esther Beeson
  • Sopan Mohnot
  • Autumn L. Laffoon
  • Adam M. Stewart
  • Siddharth Gaikwad
  • Keith Wong
  • Whitlee Haymore
  • Allan V. Kalueff
Part of the Neuromethods book series (NM, volume 52)


While zebrafish (Danio rerio) are widely utilized as a model species for neuroscience research, they also possess several qualities that make them particularly useful for studying stress and anxiety-related behaviors. Zebrafish neuroendocrine responses are robust, and correlate strongly with behavioral endpoints. These fish are also highly sensitive to various environmental challenges, including novelty stress, exposure to predators, alarm pheromone, anxiogenic drugs, and drug withdrawal. In addition, varying levels of baseline anxiety can be observed in different strains of zebrafish. Collectively, this supports the validity and efficacy of the adult zebrafish model for studying both acute and chronic anxiety.

Key words

Novel environment video-aided analysis stress anxiety fear affective behavior predator stress endocrine response endocrine signaling behavioral phenotyping drug withdrawal novel tank test genetic differences 



This work was supported by the Zebrafish Neuroscience Research Consortium (ZNRC), NARSAD YI award (AVK, ALL), Tulane Neuroscience Fellowship (DHT), Tulane LAMP Program (WH), and Tulane University intramural research funds.


  1. 1.
    Dooley, K. & Zon, L. I. (2000) Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev 10, 252–256.PubMedCrossRefGoogle Scholar
  2. 2.
    Shin, J. T. & Fishman, M. C. (2002) From zebrafish to human: modular medical models. Annu Rev Genomics Hum Genet 3, 311–340.PubMedCrossRefGoogle Scholar
  3. 3.
    Sison, M., Cawker, J., Buske, C. & Gerlai, R. (2006) Fishing for genes influencing vertebrate behavior: zebrafish making headway. Lab Anim (NY) 35, 33–39.CrossRefGoogle Scholar
  4. 4.
    Zon, L. I. & Peterson, R. T. (2005) In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4, 35–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Barcellos, L. J. G., Ritter, F., Kreutz, L. C., Quevedo, R. M., da Silva, L. B., Bedin, A. C., Finco, J. & Cericato, L. (2007) Whole-body cortisol increases after direct and visual contact with a predator in zebrafish, Danio rerio. Aquaculture 272, 774–778.CrossRefGoogle Scholar
  6. 6.
    Bass, S. L. & Gerlai, R. (2008) Zebrafish (Danio rerio) responds differentially to stimulus fish: the effects of sympatric and allopatric predators and harmless fish. Behav Brain Res 186, 107–117.PubMedCrossRefGoogle Scholar
  7. 7.
    Bencan, Z. & Levin, E. D. (2008) The role of alpha7 and alpha4beta2 nicotinic receptors in the nicotine-induced anxiolytic effect in zebrafish. Physiol Behav 95, 408–412.PubMedCrossRefGoogle Scholar
  8. 8.
    Blaser, R. & Gerlai, R. (2006) Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods. Behav Res Methods 38, 456–469.PubMedCrossRefGoogle Scholar
  9. 9.
    Gerlai, R., Chatterjee, D., Pereira, T., Sawashima, T. & Krishnannair, R. (2009) Acute and chronic alcohol dose: population differences in behavior and neurochemistry of zebrafish. Genes Brain Behav 586–599.Google Scholar
  10. 10.
    Kokel, D. & Peterson, R. T. (2008) Chemobehavioural phenomics and behaviour-based psychiatric drug discovery in the zebrafish. Brief Funct Genomic Proteomic 7, 483–490.PubMedCrossRefGoogle Scholar
  11. 11.
    Mueller, T., Vernier, P. & Wullimann, M. F. (2004) The adult central nervous cholinergic system of a neurogenetic model animal, the zebrafish Danio rerio. Brain Res 1011, 156–169.PubMedCrossRefGoogle Scholar
  12. 12.
    Panula, P., Sallinen, V., Sundvik, M., Kolehmainen, J., Torkko, V., Tiittula, A., Moshnyakov, M. & Podlasz, P. (2006) Modulatory neurotransmitter systems and behavior: towards zebrafish models of neurodegenerative diseases. Zebrafish 3, 235–247.PubMedCrossRefGoogle Scholar
  13. 13.
    Jonkman, S., Risbrough, V. B., Geyer, M. A. & Markou, A. (2008) Spontaneous nicotine withdrawal potentiates the effects of stress in rats. Neuropsychopharmacology 33, 2131–2138.PubMedCrossRefGoogle Scholar
  14. 14.
    Teixeira-Silva, F., Antunes, F. D., Silva, P. R. S., Goes, T. C., Dantas, E. C., Santiago, M. F. & Andrade, R. M. D. (2009) The free-exploratory paradigm as a model of trait anxiety in rats: test–retest reliability. Physiol Behav 96, 729–734.PubMedCrossRefGoogle Scholar
  15. 15.
    Zelena, D., Barna, I., Mlynarik, M., Gupta, O. P., Jezova, D. & Makara, G. B. (2005) Stress symptoms induced by repeated morphine withdrawal in comparison to other chronic stress models in mice. Neuroendocrinology 81, 205–215.PubMedCrossRefGoogle Scholar
  16. 16.
    Alsop, D. & Vijayan, M. M. (2008) Development of the corticosteroid stress axis and receptor expression in zebrafish. Am J Physiol Regul Integr Comp Physiol 294, R711–R719.PubMedCrossRefGoogle Scholar
  17. 17.
    Egan, R. J., Bergner, C. L., Hart, P. C., Cachat, J. M., Canavello, P. R., Elegante, M. F., Elkhayat, S. I., Bartels, B. K., Tien, A. T., Tien, D. H., Mohnot, S., Beeson, E., Glasgow, E., Amri, H., Zukowska, Z. & Kalueff, A. V. (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Brain Behav Res 38–44.Google Scholar
  18. 18.
    Braida, D., Limonta, V., Pegorini, S., Zani, A., Guerini-Rocco, C., Gori, E. & Sala, M. (2007) Hallucinatory and rewarding effect of salvinorin A in zebrafish: kappa-opioid and CB1-cannabinoid receptor involvement. Psychopharmacology (Berl) 190, 441–448.CrossRefGoogle Scholar
  19. 19.
    Gerlai, R., Lee, V. & Blaser, R. (2006) Effects of acute and chronic ethanol exposure on the behavior of adult zebrafish (Danio rerio). Pharmacol Biochem Behav 85, 752–761.PubMedCrossRefGoogle Scholar
  20. 20.
    Lopez Patino, M. A., Yu, L., Yamamoto, B. K. & Zhdanova, I. V. (2008) Gender differences in zebrafish responses to cocaine withdrawal. Physiol Behav 95, 36–47.PubMedCrossRefGoogle Scholar
  21. 21.
    Speedie, N. & Gerlai, R. (2008) Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav Brain Res 188, 168–177.PubMedCrossRefGoogle Scholar
  22. 22.
    Levin, E. D., Bencan, Z. & Cerutti, D. T. (2007) Anxiolytic effects of nicotine in zebrafish. Physiol Behav 90, 54–58.PubMedCrossRefGoogle Scholar
  23. 23.
    Lopez-Patino, M. A., Yu, L., Cabral, H. & Zhdanova, I. V. (2008) Anxiogenic effects of cocaine withdrawal in zebrafish. Physiol Behav 93, 160–171.PubMedCrossRefGoogle Scholar
  24. 24.
    Choleris, E., Thomas, A. W., Kavaliers, M. & Prato, F. S. (2001) A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci Biobehav Rev 25, 235–260.PubMedCrossRefGoogle Scholar
  25. 25.
    Alsop, D. & Vijayan, M. (2009) The zebrafish stress axis: molecular fallout from the teleost-specific genome duplication event. Gen Comp Endocrinol 161, 62–66.PubMedCrossRefGoogle Scholar
  26. 26.
    Dedovic, K., Duchesne, A., Andrews, J., Engert, V. & Pruessner, J. C. (2009) The brain and the stress axis: the neural correlates of cortisol regulation in response to stress. Neuroimage 864–871.Google Scholar
  27. 27.
    McEwen, B. S. (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87, 873–904.PubMedCrossRefGoogle Scholar
  28. 28.
    Pruessner, J. C., Dedovic, K., Pruessner, M., Lord, C., Buss, C., Collins, L., Dagher, A. & Lupien, S. J. (2009) Stress regulation in the central nervous system: evidence from structural and functional neuroimaging studies in human populations. Psychoneuroendocrinology 179–191.Google Scholar
  29. 29.
    Kern, S., Oakes, T. R., Stone, C. K., McAuliff, E. M., Kirschbaum, C. & Davidson, R. J. (2008) Glucose metabolic changes in the prefrontal cortex are associated with HPA axis response to a psychosocial stressor. Psychoneuroendocrinology 33, 517–529.PubMedCrossRefGoogle Scholar
  30. 30.
    Bremner, J. D. (1999) Does stress damage the brain? Biol Psychiatry 45, 797–805.PubMedCrossRefGoogle Scholar
  31. 31.
    Tsigos, C. & Chrousos, G. P. (2002) Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 53, 865–871.PubMedCrossRefGoogle Scholar
  32. 32.
    Winberg, S., Nilsson, A., Hylland, P., Soderstom, V. & Nilsson, G. E. (1997) Serotonin as a regulator of hypothalamic-pituitary-interrenal activity in teleost fish. Neurosci Lett 230, 113–116.PubMedCrossRefGoogle Scholar
  33. 33.
    Kelley, J. L. & Magurran, A. E. (2003) Learned predator recognition and antipredator responses in fishes. Fish Fish 4, 216–226.CrossRefGoogle Scholar
  34. 34.
    Wisenden, B. D. (2000) Olfactory assessment of predation risk in the aquatic environment. Philos Trans R Soc Lond B Biol Sci 355, 1205–1208.PubMedCrossRefGoogle Scholar
  35. 35.
    Parra, K. V., Adrian, J. C., Jr. & Gerlai, R. (2009) The synthetic substance hypoxanthine 3-N-oxide elicits alarm reactions in zebrafish (Danio rerio). Behav Brain Res 336–341.Google Scholar
  36. 36.
    Kily, L. J., Cowe, Y. C., Hussain, O., Patel, S., McElwaine, S., Cotter, F. E. & Brennan, C. H. (2008) Gene expression changes in a zebrafish model of drug dependency suggest conservation of neuro-adaptation pathways. J Exp Biol 211, 1623–1634.PubMedCrossRefGoogle Scholar
  37. 37.
    Nikodijevic, O., Jacobson, K. A. & Daly, J. W. (1993) Locomotor activity in mice during chronic treatment with caffeine and withdrawal. Pharmacol Biochem Behav 44, 199–216.PubMedCrossRefGoogle Scholar
  38. 38.
    Renier, C., Faraco, J. H., Bourgin, P., Motley, T., Bonaventure, P., Rosa, F. & Mignot, E. (2007) Genomic and functional conservation of sedative-hypnotic targets in the zebrafish. Pharmacogenet Genomics 17, 237–253.PubMedCrossRefGoogle Scholar
  39. 39.
    Blum, D., Maldonado, J., Meyer, E. & Lansberg, M. (2008) Delirium following abrupt discontinuation of fluoxetine. Clin Neurol Neurosurg 110, 69–70.PubMedCrossRefGoogle Scholar
  40. 40.
    Hughes, J. R., Higgins, S. T. & Bickel, W. K. (1994) Nicotine withdrawal versus other drug withdrawal syndromes: similarities and dissimilarities. Addiction 89, 1461–1470.PubMedCrossRefGoogle Scholar
  41. 41.
    Kokkinidis, L., Zacharko, R. M. & Anisman, H. (1986) Amphetamine withdrawal: a behavioral evaluation. Life Sci 38, 1617–1623.PubMedCrossRefGoogle Scholar
  42. 42.
    Dlugos, C. A. & Rabin, R. A. (2003) Ethanol effects on three strains of zebrafish: model system for genetic investigations. Pharmacol Biochem Behav 74, 471–480.PubMedCrossRefGoogle Scholar
  43. 43.
    Lieschke, G. J. & Currie, P. D. (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8, 353–367.PubMedCrossRefGoogle Scholar
  44. 44.
    Key, B. & Devine, C. A. (2003) Zebrafish as an experimental model: strategies for developmental and molecular neurobiology studies. Methods Cell Sci 25, 1–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Solnica-Krezel, L. (1999) Pattern formation in zebrafish–fruitful liaisons between embryology and genetics. Curr Top Dev Biol 41, 1–35.PubMedCrossRefGoogle Scholar
  46. 46.
    Patton, E. E. & Zon, L. I. (2001) The art and design of genetic screens: zebrafish. Nat Rev Genet 2, 956–966.PubMedCrossRefGoogle Scholar
  47. 47.
    Rick, J. M., Horschke, I. & Neuhauss, S. C. (2000) Optokinetic behavior is reversed in achiasmatic mutant zebrafish larvae. Curr Biol 10, 595–598.PubMedCrossRefGoogle Scholar
  48. 48.
    McGrath, P. & Li, C. Q. (2008) Zebrafish: a predictive model for assessing drug-induced toxicity. Drug Discov Today 13, 394–401.PubMedCrossRefGoogle Scholar
  49. 49.
    Rubinstein, A. L. (2006) Zebrafish assays for drug toxicity screening. Expert Opin Drug Metab Toxicol 2, 231–240.PubMedCrossRefGoogle Scholar
  50. 50.
    Heisler, L., Chu, H., Brennan, T., Danao, J., Bajwa, P., Parsons, L. & Tecott, L. (1998) Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci 95, 15049–15054.PubMedCrossRefGoogle Scholar
  51. 51.
    Kalueff, A., Fox, M., Gallagher, P. & Murphy, D. (2007) Hypolocomotion, anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice. Genes Brain Behav 6, 389–400.PubMedCrossRefGoogle Scholar
  52. 52.
    Prut, L. & Belzung, C. (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463, 3–33.PubMedCrossRefGoogle Scholar
  53. 53.
    Choleris, E., Thomas, A., Kavaliers, M. & Prato, F. (2001) A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency magnetic field. Neurosci Biobehav Rev 25, 235–260.PubMedCrossRefGoogle Scholar
  54. 54.
    Siegmund, A. & Wotjak, C. (2007) A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitized fear. J Psychiatr Res 41, 848–860.PubMedCrossRefGoogle Scholar
  55. 55.
    Eilam, D. (2003) Open-field behavior withstands drastic changes in arena size. Behav Brain Res 142, 53–62.PubMedCrossRefGoogle Scholar
  56. 56.
    Aguilar, R., Gil, L., Flint, J., Gray, J., Dawson, G., Driscoll, P., Gimenez-Llort, L., Escorihuela, R., Fernandez-Teruel, A. & Tobena, A. (2002) Learned fear, emotional reactivity and fear of heights: a factor analytic map from a large F(2) intercross of Roman rat strains. Brain Res Bull 57, 17–26.PubMedCrossRefGoogle Scholar
  57. 57.
    Flint, J., Corley, R., DeFries, J., Fulker, D., Gray, J., Millers, S. & Collins, A. (1995) A simple genetic basis for a complex psychological trait in laboratory mice. Science 269, 1432–1435.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jonathan M. Cachat
    • 1
  • Peter R. Canavello
    • 1
  • Marco F. Elegante
    • 1
  • Brett K. Bartels
    • 1
  • Salem I. Elkhayat
    • 1
  • Peter C. Hart
    • 1
  • Anna K. Tien
    • 1
  • David H. Tien
    • 1
  • Esther Beeson
    • 1
  • Sopan Mohnot
    • 1
  • Autumn L. Laffoon
    • 1
  • Adam M. Stewart
    • 1
  • Siddharth Gaikwad
    • 1
  • Keith Wong
    • 1
  • Whitlee Haymore
    • 1
  • Allan V. Kalueff
    • 1
  1. 1.Department of Pharmacology and Neuroscience ProgramTulane University Medical SchoolNew OrleansUSA

Personalised recommendations