Advertisement

Olfactory Behavior: Making Scents of a Changing World

  • Kathleen E. Whitlock
Protocol
  • 1k Downloads
Part of the Neuromethods book series (NM, volume 52)

Abstract

The olfactory sensory system is a part of the nervous system that has something for everyone; with as many as 1,000 genes coding for olfactory receptors it sports the largest gene family in the vertebrate genome; the olfactory sensory neurons regenerate throughout life; the sensory neurons send axons directly into the nervous system with the first synaptic contact occurring within the olfactory bulb; and it is the functional unit for essential behaviors such as courtship, predator avoidance and localization of food sources. Olfactory behaviors are unique in that the sensory coding of the system is not understood in as much detail as other sensory systems such as the visual and auditory systems, and the central projections are processed differently within the central nervous system. Here I review aspects of olfactory behaviors in fish, with an emphasis on zebrafish, and ponder the future of olfactory behavior research in the coming decade.

Key words

Olfactory system olfactory imprinting olfactory receptors olfactory neurons olfactory-directed movement self-recognition Immediate Early Genes hormones fluid movement sensory integration imprinting 

Notes

Acknowledgments

I would like to thank Kyle Young, Paul Howes, and Jessica Stephensen of the Darwin Initiative for introducing me to the life of puye, J. Ewer for critical reading of the manuscript, and my lab for their interest and support. Our work is supported by FONDECYT 1071071 (KW), MIDEPLAN, Millennium Science Initiative Program (KW), NIH/NIDCD R01 050820 (KW).

References

  1. 1.
    Alioto, T. S. & Ngai, J. (2005) The odorant receptor repertoire of teleost fish. BMC Genomics 6, 173.PubMedCrossRefGoogle Scholar
  2. 2.
    Hashiguchi, Y., Furuta, Y. & Nishida, M. (2008) Evolutionary patterns and selective pressures of odorant/pheromone receptor gene families in teleost fishes. PLoS One 3, e4083.PubMedCrossRefGoogle Scholar
  3. 3.
    Buck, L. & Axel, R. (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187.PubMedCrossRefGoogle Scholar
  4. 4.
    Olender, T., Lancet, D. & Nebert, D. W. (2008) Update on the olfactory receptor (OR) gene superfamily. Hum Genomics 3, 87–97.PubMedCrossRefGoogle Scholar
  5. 5.
    Godfrey, P. A., Malnic, B. & Buck, L. B. (2004) The mouse olfactory receptor gene family. Proc Natl Acad Sci USA 101, 2156–2161.PubMedCrossRefGoogle Scholar
  6. 6.
    Gilad, Y., Przeworski, M. & Lancet, D. (2004) Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS 2, E5.CrossRefGoogle Scholar
  7. 7.
    Liberles, S. D. & Buck, L. B. (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature 442, 645–650.PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang, X., Rodriguez, I., Mombaerts, P. & Firestein, S. (2004) Odorant and vomeronasal receptor genes in two mouse genome assemblies. Genomics 83, 802–811.PubMedCrossRefGoogle Scholar
  9. 9.
    Yang, H., Shi, P., Zhang, Y. P. & Zhang, J. (2005) Composition and evolution of the V2r vomeronasal receptor gene repertoire in mice and rats. Genomics 86, 306–315.PubMedCrossRefGoogle Scholar
  10. 10.
    Luu, P., Acher, F. C., Bertrand, H. O., Fan, J. & Ngai, J. (2004) Molecular determinants of ligand selectivity in a vertebrate odorant receptor. J Neurosci 24, 10128–10137.PubMedCrossRefGoogle Scholar
  11. 11.
    Speca, D. J., Lin, D. M., Sorensen, P. W., Isacoff, E. Y., Ngai, J. & Dittman, A. H. (1999) Functional identification of a goldfish odorant receptor. Neuron 23, 487–498.PubMedCrossRefGoogle Scholar
  12. 12.
    Triballeau, N., van Name, E., Laslier, G., Cai, D., Paillard, G., Sorensen, P. W., Hoffmann, R., Bertrand, H. O., Ngai, J. & Acher, F. C. (2008) High-potency olfactory receptor agonists discovered by virtual high-throughput screening: molecular probes for receptor structure and olfactory function. Neuron 60, 767–774.PubMedCrossRefGoogle Scholar
  13. 13.
    Hansen, A., Anderson, K. T. & Finger, T. E. (2004) Differential distribution of olfactory receptor neurons in goldfish: structural and molecular correlates. J Comp Neurol 477, 347–359.PubMedCrossRefGoogle Scholar
  14. 14.
    Sato, Y., Miyasaka, N. & Yoshihara, Y. (2005) Mutually exclusive glomerular innervation by two distinct types of olfactory sensory neurons revealed in transgenic zebrafish. J Neurosci 25, 4889–4897.PubMedCrossRefGoogle Scholar
  15. 15.
    Hamdani, E. H. & Døving, K. B. (2007) The functional organization of the fish olfactory system. Prog Neurobiol 82, 80–86.CrossRefGoogle Scholar
  16. 16.
    Pfister, P. & Rodriguez, I. (2005) Olfactory expression of a single and highly variable V1r pheromone receptor-like gene in fish species. Proc Natl Acad Sci USA 102, 5489–5494.PubMedCrossRefGoogle Scholar
  17. 17.
    Lipschitz, D. L. & Michel, W. C. (2002) Amino acid odorants stimulate microvillar sensory neurons. Chem Senses 27, 277–286.PubMedCrossRefGoogle Scholar
  18. 18.
    Schmachtenberg, O. (2006) Histological and electrophysiological properties of crypt cells from the olfactory epithelium of the marine teleost Trachurus symmetricus. J Comp Neurol 495, 113–121.PubMedCrossRefGoogle Scholar
  19. 19.
    Boehm, T. & Zufall, F. (2006) MHC peptides and the sensory evaluation of genotype. Trends Neurosci 29, 100–107.PubMedCrossRefGoogle Scholar
  20. 20.
    Yamazaki, K., Beauchamp, G. K., Kupniewski, D., Bard, J., Thomas, L. & Boyse, E. A. (1988) Familial imprinting determines H-2 selective mating preferences. Science 240, 1331–1332.PubMedCrossRefGoogle Scholar
  21. 21.
    Yamaguchi, M., Yamazaki, K., Beauchamp, G. K., Bard, J., Thomas, L. & Boyse, E. A. (1981) Distinctive urinary odors governed by the major histocompatibility locus of the mouse. Proc Natl Acad Sci USA 78, 5817–5820.PubMedCrossRefGoogle Scholar
  22. 22.
    Milinski, M., Griffiths, S., Wegner, K. M., Reusch, T. B., Haas-Assenbaum, A. & Boehm, T. (2005) Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proc Natl Acad Sci USA 102, 4414–4418.PubMedCrossRefGoogle Scholar
  23. 23.
    Reusch, T. B., Haberli, M. A., Aeschlimann, P. B. & Milinski, M. (2001) Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature 414, 300–302.PubMedCrossRefGoogle Scholar
  24. 24.
    Olsen, K. H., Grahn, M. & Lohm, J. (2002) Influence of MHC on sibling discrimination in Arctic char, Salvelinus alpinus (L.). J Chem Ecol 28, 783–795.PubMedCrossRefGoogle Scholar
  25. 25.
    Olsen, K. H., Grahn, M., Lohm, J. & Langefors, A. (1998) MHC and kin discrimination in juvenile Arctic charr, Salvelinus alpinus (L.). Anim Behav 56, 319–327.PubMedCrossRefGoogle Scholar
  26. 26.
    Mann, K. D., Turnell, E. R., Atema, J. & Gerlach, G. (2003) Kin recognition in juvenile zebrafish (Danio rerio) based on olfactory cues. Biol Bull 205, 224–225.PubMedCrossRefGoogle Scholar
  27. 27.
    Skals, N., Anderson, P., Kanneworff, M., Löfstedt, C. & Surlykke, A. (2005) Her odours make him deaf: crossmodal modulation of olfaction and hearing in a male moth. J Exp Biol 208, 595–601.PubMedCrossRefGoogle Scholar
  28. 28.
    Gardiner, J. M. & Atema, J. (2007) Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis. J Exp Biol 210, 1925–1934.PubMedCrossRefGoogle Scholar
  29. 29.
    Modarressie, R., Rick, I. P. & Bakker, T. C. (2006) UV matters in shoaling decisions. Proc R Soc B 273, 849–854.PubMedCrossRefGoogle Scholar
  30. 30.
    Whitlock, K. E. (2009) Evolution of the terminal nerve. In Binder, M. D., Hirokawa, N. H. & Windhorst, U. (Eds.) Encyclopedia of Neuroscience. Berlin, Springer GmbH.Google Scholar
  31. 31.
    Behrens, U. & Wagner, H. J. (2004) Terminal nerve and vision. Microsc Res Tech 65, 25–32.PubMedCrossRefGoogle Scholar
  32. 32.
    Umino, O. & Dowling, J. E. (1991) Dopamine release from interplexiform cells in the retina: effects of GnRH, FMRFamide, bicuculline, and enkephalin on horizontal cell activity. J Neurosci 11, 3034–3046.PubMedGoogle Scholar
  33. 33.
    Wirsig-Wiechmann, C. R. & Oka, Y. (2002) The terminal nerve ganglion cells project to the olfactory mucosa in the dwarf gourami. Neurosci Res 44, 337–341.PubMedCrossRefGoogle Scholar
  34. 34.
    Andersen, O. & Døving, K. B. (1991) Gonadotropin releasing hormone (GnRH) – a novel olfactory stimulant in fish. Neuroreport 2, 458–460.PubMedCrossRefGoogle Scholar
  35. 35.
    Behrens, U. D., Douglas, R. H. & Wagner, H. J. (1993) Gonadotropin-releasing hormone, a neuropeptide of efferent projections to the teleost retina induces light-adaptive spinule formation on horizontal cell dendrites in dark-adapted preparations kept in vitro. Neurosci Lett 164, 59–62.PubMedCrossRefGoogle Scholar
  36. 36.
    Maaswinkel, H. & Li, L. (2003) Olfactory input increases visual sensitivity in zebrafish: a possible function for the terminal nerve and dopaminergic interplexiform cells. J Exp Biol 206, 2201–2209.PubMedCrossRefGoogle Scholar
  37. 37.
    Weiss, O. & Meyer, D. L. (1988) Odor stimuli modulate retinal excitability in fish. Neurosci Lett 93, 209–213.PubMedCrossRefGoogle Scholar
  38. 38.
    Vitebsky, A., Reyes, R., Sanderson, M. J., Michel, W. C. & Whitlock, K. E. (2005) Isolation and characterization of the laure olfactory behavioral mutant in the zebrafish Danio rerio. Dev Dyn 234, 229–242.PubMedCrossRefGoogle Scholar
  39. 39.
    Hasler, A. D. & Scholz, A. T. (1983) Olfactory Imprinting and Homing in Salmon. Berlin, Heidelberg, Springer.CrossRefGoogle Scholar
  40. 40.
    Nevitt, G. A., Dittman, A. H., Quinn, T. P. & Moody, W. J. J. (1994) Evidence for a peripheral olfactory memory in imprinted salmon. Proc Natl Acad Sci USA 91, 4288–4292.PubMedCrossRefGoogle Scholar
  41. 41.
    Harden, M. R., Newton, L. A., Lloyd, R. & Whitlock, K. E. (2006) Olfactory imprinting is correlated with changes in gene expression in the olfactory epithelia of the zebrafish. J Neurobiol 66, 1452–1466.PubMedCrossRefGoogle Scholar
  42. 42.
    Barbour, J., Neuhaus, E. M., Piechura, H., Stoepel, N., Mashukova, A., Brunert, D., Sitek, B., Stühler, K., Meyer, H. E., Hatt, H. & Warscheid, B. (2008) New insight into stimulus-induced plasticity of the olfactory epithelium in Mus musculus by quantitative proteomics. J Proteome Res 7, 1594–1605.PubMedCrossRefGoogle Scholar
  43. 43.
    McKenzie, M. G., Harden, M. V. & Whitlock, K. E. (2006) Odorant modulation of immediate early gene expression in the zebrafish olfactory epithelia. Association for Chemoreception Sciences. Sarasota, FL, Chemical Senses.Google Scholar
  44. 44.
    Gerlach, G., Atema, J., Kingsford, M. J., Black, K. P. & Miller-Sims, V. (2007) Smelling home can prevent dispersal of reef fish larvae. Proc Natl Acad Sci USA 104, 858–863. Epub 2007 Jan 9.PubMedCrossRefGoogle Scholar
  45. 45.
    Dixson, D. L., Jones, G. P., Munday, P. L., Planes, S., Pratchett, M. S., Srinivasan, M., Syms, C. & Thorrold, S. R. (2008) Coral reef fish smell leaves to find island homes. Proc Biol Sci 275, 2831–2839.PubMedCrossRefGoogle Scholar
  46. 46.
    Doving, K. B., Stabell, O. B., Ostlund-Nilsson, S. & Fisher, R. (2006) Site fidelity and homing in tropical coral reef cardinalfish: are they using olfactory cues? Chem Senses 31, 265–272. Epub 2006 Jan 25.PubMedCrossRefGoogle Scholar
  47. 47.
    Engeszer, R. E., Patterson, L. B., Rao, A. A. & Parichy, D. M. (2007) Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish 4, 21–40.PubMedCrossRefGoogle Scholar
  48. 48.
    McClure, M. (1999) Development and evolution of melanophore patterns in fishes of the genus Danio (Teleostei: Cyprinidae). J Morphol 241, 83–105.PubMedCrossRefGoogle Scholar
  49. 49.
    Darrow, K. O. & Harris, W. A. (2004) Characterization and development of courtship in zebrafish, Danio rerio. Zebrafish 1, 40–45.PubMedCrossRefGoogle Scholar
  50. 50.
    Derby, C. D. & Sorensen, P. W. (2008) Neural processing, perception, and behavioral responses to natural chemical stimuli by fish and crustaceans. J Chem Ecol 34, 898–914.PubMedCrossRefGoogle Scholar
  51. 51.
    Sorensen, P. W., Hara, T. J., Stacey, N. E. & Goetz, F. W. M. (1988) F Prostaglandins Function as Potent Olfactory Stimulants That Comprise the Postovulatory Female Sex Pheromone in Goldfish. Biol Reprod 39, 1039–1050.PubMedCrossRefGoogle Scholar
  52. 52.
    Sorensen, P. W., Scott, A. P., Stacey, N. E. & Bowdin, L. (1995) Sulfated 17,20 beta-dihydroxy-4-pregnen-3-one functions as a potent and specific olfactory stimulant with pheromonal actions in the goldfish. Gen Comp Endocrinol 100, 128–142.PubMedCrossRefGoogle Scholar
  53. 53.
    Guthrie, K. M., Anderson, A. J., Leon, M. & Gall, C. (1993) Odor-induced increases in c-fos mRNA expression reveal an anatomical “unit” for odor processing in olfactory bulb. Proc Natl Acad Sci USA 90, 3329–3333.PubMedCrossRefGoogle Scholar
  54. 54.
    Norlin, E. M., Vedin, V., Bohm, S. & Berghard, A. (2005) Odorant-dependent, spatially restricted induction of c-fos in the olfactory epithelium of the mouse. J Neurochem 93, 1594–1602.PubMedCrossRefGoogle Scholar
  55. 55.
    Hudson, R. & Distel, H. (1998) Induced peripheral sensitivity in the developing vertebrate olfactory system [Review]. Ann NY Acad Sci (Nov 30) 855, 109–115.PubMedCrossRefGoogle Scholar
  56. 56.
    Kleerekoper, H. (1969) Olfaction in Fishes. Bloomington, IN, Indiana University Press.Google Scholar
  57. 57.
    Uchida, H., Ogawa, S., Harada, M., Matushita, M., Iwata, M., Sakuma, Y. & Parhar, I. S. (2005) The olfactory organ modulates gonadotropin-releasing hormone types and nest-building behavior in the tilapia Oreochromis niloticus. J Neurobiol 65, 1–11.PubMedCrossRefGoogle Scholar
  58. 58.
    Park, D. & Eisthen, H. L. (2003) Gonadotropin releasing hormone (GnRH) modulates odorant responses in the peripheral olfactory system of axolotls. J Neurophysiol 90, 731–738.PubMedCrossRefGoogle Scholar
  59. 59.
    Whitlock, K. E., Illing, N., Brideau, N. J., Smith, K. M. & Twomey, S. (2006) Development of GnRH cells: setting the stage for puberty. Mol Cell Endocrinol 25, 39–50.CrossRefGoogle Scholar
  60. 60.
    Flanagan, C. A., Chen, C. C., Coetsee, M., Mamputha, S., Whitlock, K. E., Bredenkamp, N., Grosenick, L., Fernald, R. D. & Illing, N. (2007) Expression, structure, function, and evolution of gonadotropin-releasing hormone (GnRH) receptors GnRH-R1SHS and GnRH-R2PEY in the teleost, Astatotilapia burtoni. Endocrinology 148, 5060–5071.PubMedCrossRefGoogle Scholar
  61. 61.
    Gorelick, D. A., Watson, W. & Halpern, M. E. (2008) Androgen receptor gene expression in the developing and adult zebrafish brain. Dev Dyn 237, 2987–2995.PubMedCrossRefGoogle Scholar
  62. 62.
    Vickers, N. J. (2000) Mechanisms of animal navigation in odor plumes. Biol Bull 198, 203–212.PubMedCrossRefGoogle Scholar
  63. 63.
    Vickers, N. J. (2006) Winging it: moth flight behavior and responses of olfactory neurons are shaped by pheromone plume dynamics. Chem Senses 31, 155–166.PubMedCrossRefGoogle Scholar
  64. 64.
    Atema, J. (1995) Chemical signals in the marine environment: dispersal, detection, and temporal signal analysis. Proc Natl Acad Sci USA 92, 62–66.PubMedCrossRefGoogle Scholar
  65. 65.
    Kleerekoper, H. & van Erkel, G. A. (1960) The olfactory apparatus of Petromyzon marinus. Can J Zool 38, 209–223.CrossRefGoogle Scholar
  66. 66.
    Kleerekoper, H. (1969) Olfaction in Fishes. Bloomington, Indiana University Press.Google Scholar
  67. 67.
    Cox, J. P. (2008) Hydrodynamic aspects of fish olfaction. J R Soc Interface 5, 575–593.PubMedCrossRefGoogle Scholar
  68. 68.
    Hansen, A. & Zeiske, E. (1998) The peripheral olfactory organ of the zebrafish, Danio rerio: an ultrastructural study. Chem Senses 23, 39–48.PubMedCrossRefGoogle Scholar
  69. 69.
    Scott, E. K. (2009) The Gal4/UAS toolbox in zebrafish: new approaches for defining behavioral circuits. J Neurochem 110, 441–456.PubMedCrossRefGoogle Scholar
  70. 70.
    Higashijima, S., Masino, M. A., Mandel, G. & Fetcho, J. R. (2003) Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J Neurophysiol 90, 3986–3997.PubMedCrossRefGoogle Scholar
  71. 71.
    Li, J., Mack, J. A., Souren, M., Yaksi, E., Higashijima, S., Mione, M., Fetcho, J. R. & Friedrich, R. W. (2005) Early development of functional spatial maps in the zebrafish olfactory bulb. J Neurosci 25, 5784–5795.PubMedCrossRefGoogle Scholar
  72. 72.
    Miyasaka, N., Morimoto, K., Tsubokawa, T., Higashijima, S., Okamoto, H. & Yoshihara, Y. (2009) From the olfactory bulb to higher brain centers: genetic visualization of secondary olfactory pathways in zebrafish. J Neurosci 29, 4756–4767.PubMedCrossRefGoogle Scholar
  73. 73.
    Koide, T., Miyasaka, N., Morimoto, K., Asakawa, K., Urasaki, A., Kawakami, K. & Yoshihara, Y. (2009) Olfactory neural circuitry for attraction to amino acids revealed by transposon-mediated gene trap approach in zebrafish. Proc Natl Acad Sci USA 106, 9884–9889.PubMedCrossRefGoogle Scholar
  74. 74.
    Heuschele, J. & Candolin, U. (2007) An increase in pH boosts olfactory communication in sticklebacks. Biol Lett 3, 411–413.PubMedCrossRefGoogle Scholar
  75. 75.
    Munday, P. L., Dixson, D. L., Donelson, J. M., Jones, G. P., Pratchett, M. S., Devitsina, G. V. & Døving, K. B. (2009) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci USA 106, 1848–1852.PubMedCrossRefGoogle Scholar
  76. 76.
    Hale, R., Swearer, S. E. & Downes, B. J. (2009) Separating natural responses from experimental artefacts: habitat selection by a diadromous fish species using odours from conspecifics and natural stream water. Oecologia 159, 679–687.PubMedCrossRefGoogle Scholar
  77. 77.
    Kingsford, R. T., Watson, J. E., Lundquist, C., Venter, O., Hughes, L., Johnston, E. L., Atherton, J., Gawel, M., Keith, D. A., Mackey, B. G., Morley, C., Possingham, H. P., Raynor, B., Recher, H. F. & Wilson, K. A. (2009) Major conservation policy issues for biodiversity in Oceania. Conserv Biol 23, 834–840.PubMedCrossRefGoogle Scholar
  78. 78.
    Kolbert, E. (2009) The Sixth Extinction? The Earth’s Species in Peril. The New Yorker, May 25, pp. 53–56.Google Scholar
  79. 79.
    Caldeira, K. & Wickett, M. E. (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425, 365.PubMedCrossRefGoogle Scholar
  80. 80.
    Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G. K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M. F., Yamanaka, Y. & Yool, A. (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686.PubMedCrossRefGoogle Scholar
  81. 81.
    Guinotte, J. M. & Fabry, V. J. (2008) Ocean acidification and its potential effects on marine ecosystems. Ann NY Acad Sci 1134, 320–342.PubMedCrossRefGoogle Scholar
  82. 82.
    Scholtz, N. L., Truelove, N. K., French, B. L., Berejikian, B. A., Quinn, T. P., Casillas, E. & Collier, T. K. (2000) Diazinon disrupts antipredator and homing behaviors in chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 57, 1911–1918.CrossRefGoogle Scholar
  83. 83.
    Sandahl, J. F., Baldwin, D. H., Jenkins, J. J. & Scholz, N. L. (2007) A sensory system at the interface between urban stormwater runoff and salmon survival. Environ Sci Technol 41, 2998–3004.PubMedCrossRefGoogle Scholar
  84. 84.
    Laetz, C. A., Baldwin, D. H., Collier, T. K., Heber, T. V., Stark, J. D. & Scholz, N. L. (2009) The synergistic toxicity of pesticide mixtures: implications for risk assessment and the conservation of endangered Pacific salmon. Environ Health Perspect 117, 348–353.PubMedCrossRefGoogle Scholar
  85. 85.
    Matz, C. J. & Krone, P. H. (2007) Cell death, stress-responsive transgene activation, and deficits in the olfactory system of larval zebrafish following cadmium exposure. Environ Sci Technol 41, 5143–5148.PubMedCrossRefGoogle Scholar
  86. 86.
    Tomelleri, J. (2002) Trout and Salmon of North America. New York, NY, The Free Press.Google Scholar
  87. 87.
    McDowall, R. M. (2006) Crying wolf, crying foul, or crying shame: alien salmonids and a biodiversity crisis in the southern cool-temperate galaxioid fishes? Rev Fish Biol Fish 16, 233–422.CrossRefGoogle Scholar
  88. 88.
    Howes, P. N. (2008) Predator recognition of invasive salmonids by native galaxids. School of the Environment & Society. Swansea, Wales, Swansea University.Google Scholar
  89. 89.
    Doty, R. L. (2009) The olfactory system and its disorders. Semin Neurol 13, S225–S228.Google Scholar
  90. 90.
    Scholz, S., Fischer, S., Gündel, U., Küster, E., Luckenbach, T. & Voelker, D. (2008) The zebrafish embryo model in environmental risk assessment – applications beyond acute toxicity testing [Review]. Environ Sci Pollut Res Int (Jul) 15(5), 394–404.PubMedCrossRefGoogle Scholar
  91. 91.
    Sloman, K. A. & Wilson, R. W. (2006) Anthropogenic impacts upon behavior and physiology. In Sloman, K. A., Wilson, R. W. & Balshine, S. (Eds.) Behavior and Physiology of Fish. San Diego, CA, Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kathleen E. Whitlock
    • 1
  1. 1.Centro de Genomicas Celular, Centro de Neurociencia de Valparaíso (CNV)Universidad de ValparaísoValparaísoChile

Personalised recommendations