The Behavioral Repertoire of Larval Zebrafish

  • Kandice Fero
  • Tohei Yokogawa
  • Harold A. Burgess
Part of the Neuromethods book series (NM, volume 52)


Shortly after larval zebrafish become free swimming their behavior is modulated by both autochthonous signals and external stimuli. Larvae show rapid responses to a range of sensory cues but are also capable of executing extended behavioral programs in response to changes in the environment. At this early stage, larvae have a small repertoire of discrete stereotyped movements which are deployed in different contexts to generate appropriate behavior. We outline the range of behaviors defined in zebrafish larvae to date and discuss insights into neural function revealed by behavioral assays. A growing body of work demonstrates that tractability of behavior and neural connectivity in larval zebrafish facilitate the analysis of neural pathways underlying vertebrate motor control and sensory processing.

Key words

Developing zebrafish larvae acoustic/vibrational stimuli vestibular stimuli lateral line stimuli visual stimuli chemical stimuli locomotion sensory cues environmental adaptation stereotypic behavior neuroanatomy neuronal pathways motor control sensory processing 



This work was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health.


  1. 1.
    Grunwald, D. J. & Eisen, J. S. (2002) Headwaters of the zebrafish – emergence of a new model vertebrate. Nat Rev Genet 3, 717–724.PubMedGoogle Scholar
  2. 2.
    Kimmel, C. B. (1982) Reticulospinal and vestibulospinal neurons in the young larva of a teleost fish, Brachydanio rerio. Prog Brain Res 57, 1–23.PubMedGoogle Scholar
  3. 3.
    Robison, B. D. & Rowland, W. (2005) A potential model system for studying the genetics of domestication: behavioral variation among wild and domesticated strains of zebra danio (Danio rerio). Can J Fish Aquat Sci 62, 2046–2054.Google Scholar
  4. 4.
    Wright, D., Nakamichi, R., Krause, J. & Butlin, R. K. (2006) QTL analysis of behavioral and morphological differentiation between wild and laboratory zebrafish (Danio rerio). Behav Genet 36, 271–284.PubMedGoogle Scholar
  5. 5.
    Engeszer, R. E., Patterson, L. B., Rao, A. A. & Parichy, D. M. (2007b) Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish 4, 21–40.PubMedGoogle Scholar
  6. 6.
    McClure, M. M., McIntyre, P. B. & McCune, A. R. (2006) Notes on the natural diet and habitat of eight danionin fishes, including the zebrafish Danio rerio. J Fish Biol 69, 553–570.Google Scholar
  7. 7.
    Spence, R., Fatema, M. K., Reichard, M., Huq, K. A., Wahab, M. A., Ahmed, Z. F. & Smith, C. (2006) The distribution and habitat preferences of the zebrafish in Bangladesh. J Fish Biol 69, 1435–1448.Google Scholar
  8. 8.
    Uchida, D., Yamashita, M., Kitano, T. & Iguchi, T. (2002) Oocyte apoptosis during the transition from ovary-like tissue to testes during sex differentiation of juvenile zebrafish. J Exp Biol 205, 711–718.PubMedGoogle Scholar
  9. 9.
    Saint-Amant, L. & Drapeau, P. (1998) Time course of the development of motor behaviors in the zebrafish embryo. J Neurobiol 37, 622–632.PubMedGoogle Scholar
  10. 10.
    Downes, G. & Granato, M. (2006) Supraspinal input is dispensable to generate glycine-mediated locomotive behaviors in the zebrafish embryo. J Neurobiol 66, 437–451.PubMedGoogle Scholar
  11. 11.
    Muller, U. & van Leeuwen, J. (2004) Swimming of larval zebrafish: ontogeny of body waves and implications for locomotory development. J Exp Biol 207, 853–868.PubMedGoogle Scholar
  12. 12.
    Clark, D. T. (1981) Visual Responses in Developing Zebrafish (Brachydanio rerio). Oregon, Eugene.Google Scholar
  13. 13.
    Mueller, T. & Wullimann, M. F. (2005) Atlas of Early Zebrafish Brain Development. A Tool for Molecular Neurogenetics. Amsterdam, Elsevier B.V.Google Scholar
  14. 14.
    Eaton, R. C. & Farley, R. D. (1974) Growth and the reduction of depensation of zebrafish, Brachydanio rerio, reared in the laboratory. Copeia 1, 204–209.Google Scholar
  15. 15.
    Engeszer, R. E., da Barbiano, L. A., Ryan, M. J. & Parichy, D. M. (2007a) Timing and plasticity of shoaling behaviour in the zebrafish, Danio rerio. Anim Behav 74, 1269–1275.PubMedGoogle Scholar
  16. 16.
    Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. (1995) Stages of embryonic development of the zebrafish. Am J Anat 203, 253–310.Google Scholar
  17. 17.
    Küster, E. & Altenburger, R. (2008) Oxygen decline in biotesting of environmental samples-Is there a need for consideration in the acute zebrafish embryo assay? Environ Toxicol 23, 745–750.PubMedGoogle Scholar
  18. 18.
    Marks, C., West, T. N., Bagatto, B., Moore, F. B. G. & Taylor, C. M. (2005) Developmental environment alters conditional aggression in zebrafish. Copeia 2005, 901–908.Google Scholar
  19. 19.
    Burgess, H. A. & Granato, M. (2008) The neurogenetic frontier–lessons from misbehaving zebrafish. Brief Funct Genomic Proteomic 7, 474–482.PubMedGoogle Scholar
  20. 20.
    Liu, N. A., Liu, Q., Wawrowsky, K., Yang, Z., Lin, S. & Melmed, S. (2006) Prolactin receptor signaling mediates the osmotic response of embryonic zebrafish lactotrophs. Mol Endocrinol 20, 871–880.PubMedGoogle Scholar
  21. 21.
    Preuss, T. & Faber, D. S. (2003) Central cellular mechanisms underlying temperature-dependent changes in the goldfish startle-escape behavior. J Neurosci 23, 5617–5626.PubMedGoogle Scholar
  22. 22.
    Preuss, T., Osei-Bonsu, P. E., Weiss, S. A., Wang, C. & Faber, D. S. (2006) Neural representation of object approach in a decision-making motor circuit. J Neurosci 26, 3454–3464.PubMedGoogle Scholar
  23. 23.
    Tinbergen, N. (1972) On the orientation of the Digger Wasp Philanthus triangulum Fabr: II. The hunting behavior (1935). The Animal in Its World. Cambridge, Harvard University Press.Google Scholar
  24. 24.
    Bastock, M. (1956) A gene mutation which alters a behavior pattern. Evolution 10, 421–439.Google Scholar
  25. 25.
    Villella, A., Hall, J. C. & Jeffrey, C. H. (2008)  Chapter 3 Neurogenetics of courtship and mating in Drosophila. Advances in Genetics. San Diego, CA, Academic Press.Google Scholar
  26. 26.
    Gray, J. M., Hill, J. J. & Bargmann, C. I. (2005) A circuit for navigation in Caenorhabditis elegans. Proc Natl Acad Sci USA 102, 3184–3191.PubMedGoogle Scholar
  27. 27.
    Mori, I. & Ohshima, Y. (1995) Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 376, 344–348.PubMedGoogle Scholar
  28. 28.
    Briggman, K., Abarbanel, H. & Kristan, W., Jr. (2005) Optical imaging of neuronal populations during decision-making. Science 307, 896–901.PubMedGoogle Scholar
  29. 29.
    Tinbergen, N. (1952b) The curious behavior of the stickleback. Sci Am 187, 22–26.Google Scholar
  30. 30.
    Sarnat, H. B. (2003) Functions of the corticospinal and corticobulbar tracts in the human newborn. Amsterdam, IOS Press.Google Scholar
  31. 31.
    Budick, S. & O’Malley, D. (2000) The behavioral repertoire of larval zebrafish: swimming, escaping and prey capture. J Exp Biol 203, 2565–2579.PubMedGoogle Scholar
  32. 32.
    Burgess, H. & Granato, M. (2007a) Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 210, 2526–2539.PubMedGoogle Scholar
  33. 33.
    McLean, D. L., Fan, J., Higashijima, S., Hale, M. E. & Fetcho, J. R. (2007) A topographic map of recruitment in spinal cord. Nature 446, 71–75.PubMedGoogle Scholar
  34. 34.
    Borla, M. A., Palecek, B., Budick, S. & O’Malley, D. M. (2002) Prey capture by larval zebrafish: evidence for fine axial motor control. Brain Behav Evol 60, 207–229.PubMedGoogle Scholar
  35. 35.
    Burgess, H. & Granato, M. (2007b) Sensorimotor gating in larval zebrafish. J Neurosci 27, 4984.PubMedGoogle Scholar
  36. 36.
    Eaton, R., Farley, R., Kimmel, C. & Schabtach, E. (1977) Functional development in the Mauthner cell system of embryos and larvae of the zebra fish. J Neurobiol 8, 151–172.PubMedGoogle Scholar
  37. 37.
    Kimmel, C. B., Patterson, J. & Kimmel, R. O. (1974) The development and behavioral characteristics of the startle response in the zebra fish. Dev Psychobiol 7, 47–60.PubMedGoogle Scholar
  38. 38.
    McElligott, M. & O’Malley, D. (2005) Prey tracking by larval zebrafish: axial kinematics and visual control. Brain Behav Evol 66, 177–196.PubMedGoogle Scholar
  39. 39.
    Facchin, L., Burgess, H. A., Siddiqi, M., Granato, M. & Halpern, M. E. (2009) Determining the function of zebrafish epithalamic asymmetry. Philos Trans R Soc Lond B Biol Sci 364, 1021–1032.PubMedGoogle Scholar
  40. 40.
    Orger, M., Kampff, A., Severi, K., Bollmann, J. & Engert, F. (2008) Control of visually guided behavior by distinct populations of spinal projection neurons. Nat Neurosci 11, 327.PubMedGoogle Scholar
  41. 41.
    Liao, J. C. & Fetcho, J. R. (2008) Shared versus specialized glycinergic spinal interneurons in axial motor circuits of larval zebrafish. J Neurosci 28, 12982–12992.PubMedGoogle Scholar
  42. 42.
    McLean, D. L. & Fetcho, J. R. (2008) Using imaging and genetics in zebrafish to study developing spinal circuits in vivo. Dev Neurobiol 68, 817–834.PubMedGoogle Scholar
  43. 43.
    Liu, K. S. & Fetcho, J. R. (1999) Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish. Neuron 23, 325–335.PubMedGoogle Scholar
  44. 44.
    Gahtan, E., Tanger, P. & Baier, H. (2005) Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum. J Neurosci 25, 9294–9303.PubMedGoogle Scholar
  45. 45.
    Blaser, R. & Gerlai, R. (2006) Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods. Behav Res Methods 38, 456–469.PubMedGoogle Scholar
  46. 46.
    Liu, D. W. & Westerfield, M. (1988) Function of identified motoneurones and co-ordination of primary and secondary motor systems during zebra fish swimming. J Physiol 403, 73–89.PubMedGoogle Scholar
  47. 47.
    Loeb, J. (1905) Studies in General Physiology. Chicago, University of Chicago Press.Google Scholar
  48. 48.
    Kohashi, T. & Oda, Y. (2008) Initiation of Mauthner- or non-Mauthner-mediated fast escape evoked by different modes of sensory input. J Neurosci 28, 10641–10653.PubMedGoogle Scholar
  49. 49.
    Burgess, H. A., Johnson, S. L. & Granato, M. (2009) Unidirectional startle responses and disrupted left-right co-ordination of motor behaviors in robo3 mutant zebrafish. Genes Brain Behav 8, 500–511.PubMedGoogle Scholar
  50. 50.
    Kimmel, C., Eaton, R. & Powell, S. (1980) Decreased fast-start performance of zebrafish larvae lacking Mauthner neurons. J Comp Physiol A 140, 343–350.Google Scholar
  51. 51.
    Eaton, R. C., Nissanov, J. & Wieland, C. M. (1984) Differential activation of Mauthner and non-Mauthner startle circuits in the zebrafish: implications for functional substitution. J Comp Physiol A Sens Neural Behav Physiol 155, 813–820.Google Scholar
  52. 52.
    Eaton, R. C. & Emberley, D. S. (1991) How stimulus direction determines the trajectory of the Mauthner-initiated escape response in a teleost fish. J Exp Biol 161, 469–487.PubMedGoogle Scholar
  53. 53.
    Glowa, J. R. & Hansen, C. T. (1994) Differences in response to an acoustic startle stimulus among forty-six rat strains. New York, Springer-Verlag.Google Scholar
  54. 54.
    Canfield, J. G. & Eaton, R. C. (1990) Swimbladder acoustic pressure transduction initiates Mauthner-mediated escape. Nature 347, 760–762.Google Scholar
  55. 55.
    Zeddies, D. G. & Fay, R. R. (2005) Development of the acoustically evoked behavioral response in zebrafish to pure tones. J Exp Biol 208, 1363–1372.PubMedGoogle Scholar
  56. 56.
    Faber, D. S. & Korn, H. (1978) Electrophysiology of the Mauthner cell: basic properties, synaptic mechanisms and associated networks. In Faber, D. S. & Korn, H. (Eds.) Neurobiology of the Mauthner Cell. New York, NY, Raven Press.Google Scholar
  57. 57.
    Best, J. D., Berghmans, S., Hunt, J. J., Clarke, S. C., Fleming, A., Goldsmith, P. & Roach, A. G. (2008) Non-associative learning in larval zebrafish. Neuropsychopharmacology 33, 1206–1215.PubMedGoogle Scholar
  58. 58.
    Diamond, J. (1971) The Mauthner cell. In Hoar, W. S. & Randall, D. J. (Eds.) Fish Physiology. New York, NY, Academic Press.Google Scholar
  59. 59.
    Eaton, R. & Farley, R. (1975) Mauthner neuron field potential in newly hatched larvae of the zebra fish. J Neurophysiol 38, 502–512.PubMedGoogle Scholar
  60. 60.
    Mintz, I., Gotow, T., Triller, A. & Korn, H. (1989) Effect of serotonergic afferents on quantal release at central inhibitory synapses. Science 245, 190–192.PubMedGoogle Scholar
  61. 61.
    Neumeister, H., Szabo, T. M. & Preuss, T. (2008) Behavioral and physiological characterization of sensorimotor gating in the goldfish startle response. J Neurophysiol 99, 1493–1502.PubMedGoogle Scholar
  62. 62.
    Bosch, D. & Schmid, S. (2008) Cholinergic mechanism underlying prepulse inhibition of the startle response in rats. Neuroscience 155, 326–335.PubMedGoogle Scholar
  63. 63.
    Schall, U., Keysers, C. & Kast, B. (1999) Pharmacology of sensory gating in the ascending auditory system of the pigeon (Columba livia). Psychopharmacology (Berl) 145, 273–282.Google Scholar
  64. 64.
    Braff, D., Stone, C., Callaway, E., Geyer, M., Glick, I. & Bali, L. (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15, 339–343.PubMedGoogle Scholar
  65. 65.
    Laruelle, M., Kegeles, L. S. & Abi-Dargham, A. (2003) Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann N Y Acad Sci 1003, 138–158.PubMedGoogle Scholar
  66. 66.
    Koch, M., Lingenhöhl, K. & Pilz, P. K. D. (1992) Loss of the acoustic startle response following neurotoxic lesions of the caudal pontine reticular formation: possible role of giant neurons. Neuroscience 49, 617–625.PubMedGoogle Scholar
  67. 67.
    Carlson, S. & Willott, J. F. (1998) Caudal pontine reticular formation of C57BL/6 J mice: responses to startle stimuli, inhibition by tones, and plasticity. J Neurophysiol 79, 2603–2614.PubMedGoogle Scholar
  68. 68.
    Lingenhohl, K. & Friauf, E. (1994) Giant neurons in the rat reticular formation: a sensorimotor interface in the elementary acoustic startle circuit? J Neurosci 14, 1176–1194.PubMedGoogle Scholar
  69. 69.
    Putnam, L. E. & Vanman, E. J. (1999) Long lead interval startle modification. In Dawson, M. E., Schell, A. M. & Bohmelt, A. H. (Eds.) Startle Modification, Implications for Neuroscience, Cognitive Science and Clinical Science. Cambridge, Cambridge University Press.Google Scholar
  70. 70.
    Aubert, L., Reiss, D. & Ouagazzal, A. M. (2006) Auditory and visual prepulse inhibition in mice: parametric analysis and strain comparisons. Genes Brain Behav 5, 423–431.PubMedGoogle Scholar
  71. 71.
    Hoffman, H. S. & Ison, J. R. (1980) Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychol Rev 87, 175–189.PubMedGoogle Scholar
  72. 72.
    Riley, B. B. & Moorman, S. J. (2000) Development of utricular otoliths, but not saccular otoliths, is necessary for vestibular function and survival in zebrafish. J Neurobiol 43, 329–337.PubMedGoogle Scholar
  73. 73.
    Whitfield, T. T., Granato, M., van Eeden, F. J., Schach, U., Brand, M., Furutani-Seiki, M., Haffter, P., Hammerschmidt, M., Heisenberg, C. P., Jiang, Y. J., Kane, D. A., Kelsh, R. N., Mullins, M. C., Odenthal, J. & Nusslein-Volhard, C. (1996) Mutations affecting development of the zebrafish inner ear and lateral line. Development 123, 241–254.PubMedGoogle Scholar
  74. 74.
    Granato, M., van Eeden, F. J., Schach, U., Trowe, T., Brand, M., Furutani-Seiki, M., Haffter, P., Hammerschmidt, M., Heisenberg, C. P., Jiang, Y. J., Kane, D. A., Kelsh, R. N., Mullins, M. C., Odenthal, J. & Nusslein-Volhard, C. (1996) Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 123, 399–413.PubMedGoogle Scholar
  75. 75.
    Nicolson, T., Rusch, A., Friedrich, R. W., Granato, M., Ruppersberg, J. P. & Nusslein-Volhard, C. (1998) Genetic analysis of vertebrate sensory hair cell mechanosensation: the zebrafish circler mutants. Neuron 20, 271–283.PubMedGoogle Scholar
  76. 76.
    Fraenkel, G. & Gunn, D. (1961) The Orientation of Animals Kineses, Taxes and Compass Reactions. New York, Dover Publications.Google Scholar
  77. 77.
    Gibbs, M. A. & Northmore, D. P. (1996) The role of torus longitudinalis in equilibrium orientation measured with the dorsal light reflex. Brain Behav Evol 48, 115–120.PubMedGoogle Scholar
  78. 78.
    Moorman, S. J., Burress, C., Cordova, R. & Slater, J. (1999) Stimulus dependence of the development of the zebrafish (Danio rerio) vestibular system. J Neurobiol 38, 247–258.PubMedGoogle Scholar
  79. 79.
    Douglass, A. D., Kraves, S., Deisseroth, K., Schier, A. F. & Engert, F. (2008) Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons. Curr Biol 18, 1133–1137.PubMedGoogle Scholar
  80. 80.
    O’Malley, D. M., Kao, Y. H. & Fetcho, J. R. (1996) Imaging the functional organization of zebrafish hindbrain segments during escape behaviors. Neuron 17, 1145–1155.PubMedGoogle Scholar
  81. 81.
    Palmer, L. M., Deffenbaugh, M. & Mensinger, A. F. (2005) Sensitivity of the anterior lateral line to natural stimuli in the oyster toadfish, Opsanus tau (Linnaeus). J Exp Biol 208, 3441–3450.PubMedGoogle Scholar
  82. 82.
    Webb, J. F. & Shirey, J. E. (2003) Postembryonic development of the cranial lateral line canals and neuromasts in zebrafish. Dev Dyn 228, 370–385.PubMedGoogle Scholar
  83. 83.
    van Trump, W. J. & McHenry, M. J. (2008) The morphology and mechanical sensitivity of lateral line receptors in zebrafish larvae (Danio rerio). J Exp Biol 211, 2105–2115.PubMedGoogle Scholar
  84. 84.
    Partridge, B. L. & Pitcher, T. J. (1980) The sensory basis of fish schools: relative roles of lateral line and vision. J Comp Physiol A Sens Neural Behav Physiol 135, 315–325.Google Scholar
  85. 85.
    Weissert, R. & Campenhausen, C. (1981) Discrimination between stationary objects by the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A Sens Neural Behav Physiol 143, 375–381.Google Scholar
  86. 86.
    Montgomery, J. C., Baker, C. F. & Carton, A. G. (1997) The lateral line can mediate rheotaxis in fish. Nature 389, 960–963.Google Scholar
  87. 87.
    Blaxter, J. H. S. & Fuiman, L. A. (1990) The role of the sensory systems of herring larvae in evading predatory fishes. J Mar Biol Assoc UK 70, 413–427.Google Scholar
  88. 88.
    McHenry, M. J., Feitl, K. E., Strother, J. A. & van Trump, W. J. (2009) Larval zebrafish rapidly sense the water flow of a predator’s strike. Biol Lett 5, 477–479.PubMedGoogle Scholar
  89. 89.
    Metcalfe, W. K., Kimmel, C. B. & Schabtach, E. (1985) Anatomy of the posterior lateral line system in young larvae of the zebrafish. J Comp Neurol 233, 377–389.PubMedGoogle Scholar
  90. 90.
    Bricaud, O., Chaar, V., Dambly-Chaudiere, C. & Ghysen, A. (2001) Early efferent innervation of the zebrafish lateral line. J Comp Neurol 434, 253–261.PubMedGoogle Scholar
  91. 91.
    Palmer, L. M., Giuffrida, B. A. & Mensinger, A. F. (2003) Neural recordings from the lateral line in free-swimming toadfish, Opsanus tau. Biol Bull 205, 216–218.PubMedGoogle Scholar
  92. 92.
    Russell, I. J. & Roberts, B. L. (1974) Active reduction of lateral-line sensitivity in swimming dogfish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 94, 7–15.Google Scholar
  93. 93.
    Yoshizawa, M. & Jeffery, W. R. (2008) Shadow response in the blind cavefish Astyanax reveals conservation of a functional pineal eye. J Exp Biol 211, 292–299.PubMedGoogle Scholar
  94. 94.
    Burrill, J. D. & Easter, S. S., Jr. (1994) Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio). J Comp Neurol 346, 583–600.PubMedGoogle Scholar
  95. 95.
    Clausen, R. G. (1931) Orientation in fresh water fishes. Ecology 3, 541–546.Google Scholar
  96. 96.
    Lyon, E. P. (1904) On rheotropism. I. Rheotropism in fishes. Am J Physiol 12, 149–161.Google Scholar
  97. 97.
    Orger, M. & Baier, H. (2005) Channeling of red and green cone inputs to the zebrafish optomotor response. Vis Neurosci 22, 275–281.PubMedGoogle Scholar
  98. 98.
    Orger, M. B., Smear, M. C., Anstis, S. M. & Baier, H. (2000) Perception of Fourier and non-Fourier motion by larval zebrafish. Nat Neurosci 3, 1128–1133.PubMedGoogle Scholar
  99. 99.
    Springer, A. D., Easter, S. S., Jr. & Agranoff, B. W. (1977) The role of the optic tectum in various visually mediated behaviors of goldfish. Brain Res 128, 393–404.PubMedGoogle Scholar
  100. 100.
    Neuhauss, S., Biehlmaier, O., Seeliger, M., Das, T., Kohler, K., Harris, W. & Baier, H. (1999) Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J Neurosci 19, 8603.PubMedGoogle Scholar
  101. 101.
    Roeser, T. & Baier, H. (2003) Visuomotor behaviors in larval zebrafish after GFP-guided laser ablation of the optic tectum. J Neurosci 23, 3726–3734.PubMedGoogle Scholar
  102. 102.
    Muto, A., Orger, M. B., Wehman, A. M., Smear, M. C., Kay, J. N., Page-McCaw, P. S., Gahtan, E., Xiao, T., Nevin, L. M., Gosse, N. J., Staub, W., Finger-Baier, K. & Baier, H. (2005) Forward genetic analysis of visual behavior in zebrafish. PLoS Genet 1, e66.PubMedGoogle Scholar
  103. 103.
    Easter, S. S., Jr. (1972) Pursuit eye movements in goldfish (Carassius auratus). Vision Res 12, 673–688.PubMedGoogle Scholar
  104. 104.
    Bagatto, B., Pelster, B. & Burggren, W. W. (2001) Growth and metabolism of larval zebrafish: effects of swim training. J Exp Biol 204, 4335–4343.PubMedGoogle Scholar
  105. 105.
    Brockerhoff, S., Hurley, J., Janssen-Bienhold, U., Neuhauss, S., Driever, W. & Dowling, J. (1995) A behavioral screen for isolating zebrafish mutants with visual system defects. Proc Natl Acad Sci 92, 10545–10549.PubMedGoogle Scholar
  106. 106.
    Easter, S. & Nicola, G. (1997a) The development of vision in the zebrafish (Danio rerio). Dev Biol 180, 646–663.Google Scholar
  107. 107.
    Easter, S. S., Jr. & Nicola, G. N. (1997b) The development of eye movements in the zebrafish (Danio rerio). Dev Psychobiol 31, 267–276.PubMedGoogle Scholar
  108. 108.
    Gross, J. M., Perkins, B. D., Amsterdam, A., Egana, A., Darland, T., Matsui, J. I., Sciascia, S., Hopkins, N. & Dowling, J. E. (2005) Identification of zebrafish insertional mutants with defects in visual system development and function. Genetics 170, 245–261.PubMedGoogle Scholar
  109. 109.
    Huang, Y. Y. & Neuhauss, S. C. F. (2008) The optokinetic response in zebrafish and its applications. Front Biosci 13, 1899–1916.PubMedGoogle Scholar
  110. 110.
    Qian, H., Zhu, Y., Ramsey, D. J., Chappell, R. L., Dowling, J. E. & Ripps, H. (2005) Directional asymmetries in the optokinetic response of larval zebrafish (Danio rerio). Zebrafish 2, 189–196.PubMedGoogle Scholar
  111. 111.
    Beck, J. C., Gilland, E., Tank, D. W. & Baker, R. (2004) Quantifying the ontogeny of optokinetic and vestibuloocular behaviors in zebrafish, medaka, and goldfish. J Neurophysiol 92, 3546–3561.PubMedGoogle Scholar
  112. 112.
    Harris, L. R., Lepore, F. & Guillemot, J. P. (1980) Abolition of optokinetic nystagmus in the cat. Science 210, 91–92.PubMedGoogle Scholar
  113. 113.
    Naegele, J. R. & Held, R. (1982) The postnatal development of monocular optokinetic nystagmus in infants. Vision Res 22, 341.PubMedGoogle Scholar
  114. 114.
    Bilotta, J., Saszik, S. & Sutherland, S. (2001) Rod contributions to the electroretinogram of the dark-adapted developing zebrafish. Dev Dyn 222, 564–570.PubMedGoogle Scholar
  115. 115.
    Ball, W. & Tronick, E. (1971) Infant responses to impending collision: optical and real. Science 171, 818–820.PubMedGoogle Scholar
  116. 116.
    King, S. M., Dykeman, C., Redgrave, P. & Dean, P. (1992) Use of a distracting task to obtain defensive head movements to looming visual stimuli by human adults in a laboratory setting. Perception 21, 245–259.PubMedGoogle Scholar
  117. 117.
    Dill, L. (1974a) The escape response of the zebra danio (Brachydanio rerio). I. The stimulus for escape. Anim Behav 22, 710–721.Google Scholar
  118. 118.
    Dill, L. M. (1974b) The escape response of the zebra danio (Brachydanio rerio). II. The effect of experience. Anim Behav 22, 723–730.Google Scholar
  119. 119.
    Li, L. & Dowling, J. E. (1997) A dominant form of inherited retinal degeneration caused by a non-photoreceptor cell-specific mutation. Proc Natl Acad Sci USA 94, 11645–11650.PubMedGoogle Scholar
  120. 120.
    Sun, H. & Frost, B. J. (1998) Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. Nat Neurosci 1, 296–303.PubMedGoogle Scholar
  121. 121.
    Barth, K. A., Miklosi, A., Watkins, J., Bianco, I. H., Wilson, S. W. & Andrew, R. J. (2005) fsi Zebrafish show concordant reversal of laterality of viscera, neuroanatomy, and a subset of behavioral responses. Curr Biol 15, 844–850.PubMedGoogle Scholar
  122. 122.
    Watkins, J., Miklosi, A. & Andrew, R. J. (2004) Early asymmetries in the behaviour of zebrafish larvae. Behav Brain Res 151, 177–183.PubMedGoogle Scholar
  123. 123.
    Zottoli, S., Hordes, A. & Faber, D. (1987) Localization of optic tectal input to the ventral dendrite of the goldfish Mauthner cell. Brain Res 401, 113–121.PubMedGoogle Scholar
  124. 124.
    Emran, F., Rihel, J., Adolph, A. R., Wong, K. Y., Kraves, S. & Dowling, J. E. (2007) OFF ganglion cells cannot drive the optokinetic reflex in zebrafish. Proc Natl Acad Sci USA 104, 19126–19131.PubMedGoogle Scholar
  125. 125.
    Prober, D. A., Rihel, J., Onah, A. A., Sung, R. -J. & Schier, A. F. (2006) Hypocretin/ orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci 26, 13400–13410.PubMedGoogle Scholar
  126. 126.
    Romanes, G. (1883) Animal Intelligence. New York, NY, D. Appleton and Co.Google Scholar
  127. 127.
    Gerlai, R., Lahav, M., Guo, S. & Rosenthal, A. (2000) Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67, 773–782.PubMedGoogle Scholar
  128. 128.
    Maximino, C., Marques, T., Dias, F., Cortes, F. V., Taccolini, I. B., Pereira, P. M., Colmanetti, R., Gazolla, R. A., Tavares, R. I. & Rodrigues, S. T. K. (2007) A comparative analysis of the preference for dark environments in five teleosts. Int J Comp Psychol 20, 351–367.Google Scholar
  129. 129.
    Serra, E. L., Medalha, C. C. & Mattioli, R. (1999) Natural preference of zebrafish (Danio rerio) for a dark environment. Braz J Med Biol Res 32, 1551–1553.PubMedGoogle Scholar
  130. 130.
    Burgess, H. A., Schoch, H. & Granato, M. (2010) Distinct retinal pathways drive spatial orientation behaviors in zebrafish navigation. Curr Biol 20, 381–386.PubMedGoogle Scholar
  131. 131.
    Bulkowski, L. & Meade, J. W. (1983) Changes in phototaxis during early development of walleye. Trans Am Fish Soc 112, 445–447.Google Scholar
  132. 132.
    Miklosi, A. & Andrew, R. J. (2006) The zebrafish as a model for behavioral studies. Zebrafish 3, 227–234.PubMedGoogle Scholar
  133. 133.
    Kicliter, E. (1973) Flux, wavelength and movement discrimination in frogs: forebrain and midbrain contributions. Brain Behav Evol 8, 340–365.PubMedGoogle Scholar
  134. 134.
    Colwill, R. M., Raymond, M. P., Ferreira, L. & Escudero, H. (2005) Visual discrimination learning in zebrafish (Danio rerio). Behav Processes 70, 19–31.PubMedGoogle Scholar
  135. 135.
    Jardine, D. & Litvak, M. K. (2003) Direct yolk sac volume manipulation of zebrafish embryos and the relationship between offspring size and yolk sac volume. J Fish Biol 63, 388–397.Google Scholar
  136. 136.
    Canfield, J. G. & Rose, G. J. (1993) Activation of Mauthner neurons during prey capture. J Comp Physiol A Sens Neural Behav Physiol 172, 611–618.Google Scholar
  137. 137.
    Logan, D. W., Burn, S. F. & Jackson, I. J. (2006) Regulation of pigmentation in zebrafish melanophores. Pigment Cell Res 19, 206–213.PubMedGoogle Scholar
  138. 138.
    Peng, J., Wagle, M., Mueller, T., Mathur, P., Lockwood, B. L., Bretaud, S. & Guo, S. (2009) Ethanol-modulated camouflage response screen in zebrafish uncovers a novel role for cAMP and extracellular signal-regulated kinase signaling in behavioral sensitivity to ethanol. J Neurosci 29, 8408–8418.PubMedGoogle Scholar
  139. 139.
    Lockwood, B., Bjerke, S., Kobayashi, K. & Guo, S. (2004) Acute effects of alcohol on larval zebrafish: a genetic system for large-scale screening. Pharmacol Biochem Behav 77, 647–654.PubMedGoogle Scholar
  140. 140.
    Concha, M. L. & Wilson, S. W. (2001) Asymmetry in the epithalamus of vertebrates. J Anat 199, 63–84.PubMedGoogle Scholar
  141. 141.
    Gamse, J. T., Kuan, Y. S., Macurak, M., Brosamle, C., Thisse, B., Thisse, C. & Halpern, M. E. (2005) Directional asymmetry of the zebrafish epithalamus guides dorsoventral innervation of the midbrain target. Development 132, 4869–4881.PubMedGoogle Scholar
  142. 142.
    Vallortigara, G. & Rogers, L. J. (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28, 575–589.PubMedGoogle Scholar
  143. 143.
    Andrew, R. J., Dharmaretnam, M., Gyori, B., Miklosi, A., Watkins, J. A. & Sovrano, V. A. (2009) Precise endogenous control of involvement of right and left visual structures in assessment by zebrafish. Behav Brain Res 196, 99–105.PubMedGoogle Scholar
  144. 144.
    Sovrano, V. A. & Andrew, R. J. (2006) Eye use during viewing a reflection: behavioural lateralisation in zebrafish larvae. Behav Brain Res 167, 226–231.PubMedGoogle Scholar
  145. 145.
    Hansen, A. & Zeiske, E. (1993) Development of the olfactory organ in the zebrafish, Brachydanio rerio. J Comp Neurol 333, 289–300.PubMedGoogle Scholar
  146. 146.
    Li, J., Mack, J. A., Souren, M., Yaksi, E., Higashijima, S., Mione, M., Fetcho, J. R. & Friedrich, R. W. (2005) Early development of functional spatial maps in the zebrafish olfactory bulb. J Neurosci 25, 5784–5795.PubMedGoogle Scholar
  147. 147.
    Whitlock, K. E. (2006) The sense of scents: olfactory behaviors in the zebrafish. Zebrafish 3, 203–213.PubMedGoogle Scholar
  148. 148.
    Hara, T. J. (1994) The diversity of chemical stimulation in fish olfaction and gustation. Rev Fish Biol Fish 4, 1–35.Google Scholar
  149. 149.
    Vitebsky, A., Reyes, R., Sanderson, M., Michel, W. & Whitlock, K. (2005) Isolation and characterization of the laure olfactory behavioral mutant in the zebrafish, Danio rerio. Dev Dyn 234, 229–242.PubMedGoogle Scholar
  150. 150.
    Matz, C. J. & Krone, P. H. (2007) Cell death, stress-responsive transgene activation, and deficits in the olfactory system of larval zebrafish following cadmium exposure. Environ Sci Technol 41, 5143–5148.PubMedGoogle Scholar
  151. 151.
    Lindsay, S. M. & Vogt, R. G. (2004) Behavioral responses of newly hatched zebrafish (Danio rerio) to amino acid chemostimulants. Chem Senses 29, 93–100.PubMedGoogle Scholar
  152. 152.
    Prober, D. A., Zimmerman, S., Myers, B. R., McDermott, B. M., Jr., Kim, S. H., Caron, S., Rihel, J., Solnica-Krezel, L., Julius, D., Hudspeth, A. J. & Schier, A. F. (2008) Zebrafish TRPA1 channels are required for chemosensation but not for thermosensation or mechanosensory hair cell function. J Neurosci 28, 10102–10110.PubMedGoogle Scholar
  153. 153.
    Dempsey, C. H. (1978) Chemical stimuli as a factor in feeding and intraspecific behaviour of herring larvae. J Mar Biol Ass UK 58, 739–747.Google Scholar
  154. 154.
    Døving, K. B., Mårstøl, M., Andersen, J. R. & Knutsen, J. A. (1994) Experimental evidence of chemokinesis in newly hatched cod larvae (Gadus morhua L.). Mar Biol 120, 351–358.Google Scholar
  155. 155.
    Atema, J., Kingsford, M. J. & Gerlach, G. (2002) Larval reef fish could use odour for detection, retention and orientation to reefs. Mar Ecol Prog Ser 241, 151–160.Google Scholar
  156. 156.
    Gerlach, G., Hodgins-DAVIS, A., Avolio, C. & Schunter, C. (2008) Kin recognition in zebrafish: a 24-hour window for olfactory imprinting. Proc Biol Sci 275, 2165–2170.PubMedGoogle Scholar
  157. 157.
    Harden, M. V., Newton, L. A., Lloyd, R. C. & Whitlock, K. E. (2006) Olfactory imprinting is correlated with changes in gene expression in the olfactory epithelia of the zebrafish. J Neurobiol 66, 1452–1466.PubMedGoogle Scholar
  158. 158.
    Jesuthasan, S. J. & Mathuru, A. S. (2008) The alarm response in zebrafish: innate fear in a vertebrate genetic model. J Neurogenet 22, 211–228.PubMedGoogle Scholar
  159. 159.
    Speedie, N. & Gerlai, R. (2008) Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav Brain Res 188, 168–177.PubMedGoogle Scholar
  160. 160.
    Waldman, B. (1982) Quantitative and developmental analysis of the alarm reaction in the Zebra Danio, Brachydanio rerio. Copeia 1, 1–9.Google Scholar
  161. 162.
    Wallace, K. & Pack, M. (2003) Unique and conserved aspects of gut development in zebrafish. Dev Biol 255, 12–29.PubMedGoogle Scholar
  162. 162.
    Finney, J. L., Robertson, G. N., McGee, C. A., Smith, F. M. & Croll, R. P. (2006) Structure and autonomic innervation of the swim bladder in the zebrafish (Danio rerio). J Comp Neurol 495, 587–606.PubMedGoogle Scholar
  163. 163.
    Robertson, G. N., McGee, C. A., Dumbarton, T. C., Croll, R. P. & Smith, F. M. (2007) Development of the swimbladder and its innervation in the zebrafish, Danio rerio. J Morphol 268, 967.PubMedGoogle Scholar
  164. 164.
    Goolish, E. & Okutake, K. (1999) Lack of gas bladder inflation by the larvae of zebrafish in the absence of an air-water interface. J Fish Biol 55, 1054–1063.Google Scholar
  165. 165.
    Laale, H. W. (1977) A literature review. J Fish Biol 10, 121–173.Google Scholar
  166. 166.
    Amsterdam, A., Nissen, R. M., Sun, Z., Swindell, E. C., Farrington, S. & Hopkins, N. (2004) Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci 101, 12792.PubMedGoogle Scholar
  167. 167.
    Cahill, G., Hurd, M. & Batchelor, M. (1998) Circadian rhythmicity in the locomotor activity of larval zebrafish. Neuroreport 9, 3445–3449.PubMedGoogle Scholar
  168. 168.
    Hurd, M. & Cahill, G. (2002) Entraining signals initiate behavioral circadian rhythmicity in larval zebrafish. J Biol Rhythms 17, 307–314.PubMedGoogle Scholar
  169. 169.
    Yokogawa, T., Marin, W., Faraco, J., Pezeron, G., Appelbaum, L., Zhang, J., Rosa, F., Mourrain, P. & Mignot, E. (2007) Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biol 5, e277.PubMedGoogle Scholar
  170. 170.
    Aschoff, J. (1960) Exogenous and endogenous components in circadian rhythms. Cold Spring Harb Symp Quant Biol 25, 11–28.PubMedGoogle Scholar
  171. 171.
    Mrosovsky, N. & Hattar, S. (2003) Impaired masking responses to light in melanopsin-knockout mice. Chronobiol Int 20, 989–999.PubMedGoogle Scholar
  172. 172.
    Zepelin, H. (2005) Mammalian sleep. In Kryger, M. H., Roth, T. & Dement, W. C. (Eds.) Principles and Practice of Sleep Medicine. 4th ed. Philadelphia, PA, Saunders.Google Scholar
  173. 173.
    Lyamin, O., Pryaslova, J., Lance, V. & Siegel, J. (2005) Animal behaviour: continuous activity in cetaceans after birth. Nature 435, 1177.PubMedGoogle Scholar
  174. 174.
    Siegel, J. M., Manger, P. R., Nienhuis, R., Fahringer, H. M. & Pettigrew, J. D. (1996) The echidna Tachyglossus aculeatus combines REM and non-REM aspects in a single sleep state: implications for the evolution of sleep. J Neurosci 16, 3500–3506.PubMedGoogle Scholar
  175. 175.
    Zimmerman, J. E., Naidoo, N., Raizen, D. M. & Pack, A. I. (2008) Conservation of sleep: insights from non-mammalian model systems. Trends Neurosci 31, 371–376.PubMedGoogle Scholar
  176. 176.
    Zhdanova, I. V., Wang, S. Y., Leclair, O. U. & Danilova, N. P. (2001) Melatonin promotes sleep-like state in zebrafish. Brain Res 903, 263–268.PubMedGoogle Scholar
  177. 177.
    Faraco, J. H., Appelbaum, L., Marin, W., Gaus, S. E., Mourrain, P. & Mignot, E. (2006) Regulation of hypocretin (orexin) expression in embryonic zebrafish. J Biol Chem 281, 29753–29761.PubMedGoogle Scholar
  178. 178.
    Kaslin, J. & Panula, P. (2001) Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio). J Comp Neurol 440, 342–377.PubMedGoogle Scholar
  179. 179.
    Renier, C., Faraco, J. H., Bourgin, P., Motley, T., Bonaventure, P., Rosa, F. & Mignot, E. (2007) Genomic and functional conservation of sedative-hypnotic targets in the zebrafish. Pharmacogenet Genomics 17, 237–253.PubMedGoogle Scholar
  180. 180.
    Zhdanova, I. V. (2006) Sleep in zebrafish. Zebrafish 3, 215–226.PubMedGoogle Scholar
  181. 181.
    Taheri, S., Zeitzer, J. M. & Mignot, E. (2002) The role of hypocretins (orexins) in sleep regulation and narcolepsy. Annu Rev Neurosci 25, 283–313.PubMedGoogle Scholar
  182. 182.
    Lin, L., Faraco, J., Li, R., Kadotani, H., Rogers, W., Lin, X., Qiu, X., de Jong, P. J., Nishino, S. & Mignot, E. (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376.PubMedGoogle Scholar
  183. 183.
    Mochizuki, T., Crocker, A., McCormack, S., Yanagisawa, M., Sakurai, T. & Scammell, T. E. (2004) Behavioral state instability in orexin knock-out mice. J Neurosci 24, 6291–6300.PubMedGoogle Scholar
  184. 184.
    Allada, R. & Siegel, J. M. (2008) Unearthing the phylogenetic roots of sleep. Curr Biol 18, R670–R679.PubMedGoogle Scholar
  185. 185.
    Cubbage, C. C. & Mabee, P. M. (1996) Development of the cranium and paired fins in the zebrafish Danio rerio (Ostariophysi, Cyprinidae). J Morphol 229, 121–160.Google Scholar
  186. 186.
    Rosenthal, G. G. & Ryan, M. J. (2005) Assortative preferences for stripes in danios. Anim Behav 70, 1063–1066.Google Scholar
  187. 187.
    Saverino, C. & Gerlai, R. (2008) The social zebrafish: behavioral responses to conspecific, heterospecific, and computer animated fish. Behav Brain Res 191, 77–87.PubMedGoogle Scholar
  188. 188.
    Engeszer, R., Ryan, M. & Parichy, D. (2004) Learned social preference in zebrafish. Curr Biol 14, 881–884.PubMedGoogle Scholar
  189. 189.
    Engeszer, R. E., Wang, G., Ryan, M. J. & Parichy, D. M. (2008) Sex-specific perceptual spaces for a vertebrate basal social aggregative behavior. Proc Natl Acad Sci USA 105, 929–933.PubMedGoogle Scholar
  190. 190.
    McCann, L. I. & Carlson, C. C. (1982) Effect of cross-rearing on species identification in zebra fish and pearl danios. Dev Psychobiol 15, 71–74.PubMedGoogle Scholar
  191. 191.
    Mann, K. D., Turnell, E. R., Atema, J. & Gerlach, G. (2003) Kin recognition in juvenile zebrafish (Danio rerio) based on olfactory cues. Biol Bull 205, 224–225.PubMedGoogle Scholar
  192. 192.
    Gerlach, G. & Lysiak, N. (2006) Kin recognition and inbreeding avoidance in zebrafish, Danio rerio, is based on phenotype matching. Anim Behav 71, 1371–1377.Google Scholar
  193. 193.
    Darland, T. & Dowling, J. E. (2001) Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci USA 98, 11691–11696.PubMedGoogle Scholar
  194. 194.
    Williams, F. E., White, D. & Messer, W. S. (2002) A simple spatial alternation task for assessing memory function in zebrafish. Behav Processes 58, 125–132.PubMedGoogle Scholar
  195. 195.
    Thorsen, D., Cassidy, J. & Hale, M. (2004) Swimming of larval zebrafish: fin-axis coordination and implications for function and neural control. J Exp Biol 207, 4175–4183.PubMedGoogle Scholar
  196. 196.
    Higashijima, S., Masino, M. A., Mandel, G. & Fetcho, J. R. (2003) Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J Neurophysiol 90, 3986–3997.PubMedGoogle Scholar
  197. 197.
    Yaksi, E., Judkewitz, B. & Friedrich, R. W. (2007) Topological reorganization of odor representations in the olfactory bulb. PLoS Biol 5, e178.PubMedGoogle Scholar
  198. 198.
    Asakawa, K., Suster, M. L., Mizusawa, K., Nagayoshi, S., Kotani, T., Urasaki, A., Kishimoto, Y., Hibi, M. & Kawakami, K. (2008) Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci USA 105, 1255–1260.PubMedGoogle Scholar
  199. 199.
    Davison, J. M., Akitake, C. M., Goll, M. G., Rhee, J. M., Gosse, N., Baier, H., Halpern, M. E., Leach, S. D. & Parsons, M. J. (2007) Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. Dev Biol 304, 811–824.PubMedGoogle Scholar
  200. 200.
    Scott, E. K., Mason, L., Arrenberg, A. B., Ziv, L., Gosse, N. J., Xiao, T., Chi, N. C., Asakawa, K., Kawakami, K. & Baier, H. (2007) Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat Methods 4, 323–326.PubMedGoogle Scholar
  201. 201.
    Tinbergen, N. (1952a) The behavior of the stickleback. Sci Am 187, 22–26.Google Scholar
  202. 202.
    Rafal, R., Smith, J., Krantz, J., Cohen, A. & Brennan, C. (1990) Extrageniculate vision in hemianopic humans: saccade inhibition by signals in the blind field. Science 250, 118–121.PubMedGoogle Scholar
  203. 203.
    Howard, I. P. & Ohmi, M. (1984) The efficiency of the central and peripheral retina in driving human optokinetic nystagmus. Vision Res 24, 969–976.PubMedGoogle Scholar
  204. 204.
    Aronson, L. R. (1970) Functional evolution of the forebrain in lower vertebrates. In Aronso, N. L. R., Tobac, H. E., Lehrma, N. D. S. & Rosenblat, T. J. S. (Eds.) Development and Evolution of Behavior. San Francisco, CA, WH. Freeman and Company.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kandice Fero
    • 1
  • Tohei Yokogawa
    • 1
  • Harold A. Burgess
    • 1
  1. 1.Laboratory of Molecular GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUSA

Personalised recommendations