Spatial Cognition in Zebrafish

  • Joshua L. Haight
  • Joseph A. Schroeder
Part of the Neuromethods book series (NM, volume 52)


Studies of teleost spatial cognition have revealed that fish possess an impressive array of navigational abilities and are capable of spatial memory based tasks utilizing both egocentric and allocentric cues. The emergence of zebrafish as an optimal animal model for developmental, genetic, and chemical screening investigations necessitates a better understanding of this species behavior including spatial cognition. Investigations of zebrafish spatial cognition described here reveal that zebrafish quickly learn to execute spatial tasks based on visual cues to avoid simulated predator attacks and to obtain food reward. They are also capable of memorizing spatial alternation sequences for navigational tasks and memory of these tasks is retained for several weeks. Two additional protocols designed to evaluate complex navigational behavior in zebrafish are also described. Results from preliminary studies indicate that zebrafish can learn to navigate mazes comprised of multiple directional turns with minimal aid from allocentric visual cues. The growing collection of zebrafish spatial cognition protocols and the accumulation of data from carefully designed behavioral studies when combined with what is known about the molecular neurobiology of the species will ultimately lead to a better understanding of the neurological basis of spatial cognition.

Key words

Spatial memory spatial alternation cognitive maps navigation allocentric strategies egocentric strategies neurological basis of cognition conditioned place preference conditioned place aversion associative learning three-axis maze multiple t-maze 


  1. 1.
    Warburton, K. (1990) The use of local landmarks by foraging goldfish. Anim Behav 40, 500–505.CrossRefGoogle Scholar
  2. 2.
    de Perera, T. B. (2004) Fish can encode order in their spatial map. Proc R Soc Lond B Biol Sci 271, 2131–2134.CrossRefGoogle Scholar
  3. 3.
    Rodriguez, F., Duran, E., Vargas, J. P., Torres, B. & Salas, C. (1994) Performance of goldfish trained in allocentric and egocentric maze procedures suggests the presence of a cognitive mapping system in fishes. Anim Learn Behav 22, 409–420.CrossRefGoogle Scholar
  4. 4.
    Braithwaite, V. A. (1998) Spatial memory, landmark use and orientation in fish. In Healy, S. (Ed.) Spatial Representation in Animals. New York, NY, Oxford University Press.Google Scholar
  5. 5.
    Braithwaite, V. A. & de Perera, T. B. (2006) Short-range orientation in fish: how fish map space. Mar Freshw Behav Physiol 39, 37–47.CrossRefGoogle Scholar
  6. 6.
    Levin, L. E., Belmonte, P. & Gonzalez, O. (1992) Sun-compass orientation in the characid cheirodon-pulcher. Environ Biol Fishes 35, 321–325.CrossRefGoogle Scholar
  7. 7.
    Walker, M. M. (1984) Learned Magnetic-Field Discrimination in yellowfin tuna, Thunnus-albacares. J Comp Physiol 155, 673–679.CrossRefGoogle Scholar
  8. 8.
    Mills, D. (1989) Ecology and Management of Atlantic Salmon. New York, NY, Chapman and Hall.Google Scholar
  9. 9.
    Braithwaite, V. A., Armstrong, J. D., Mcadam, H. M. & Huntingford, F. A. (1996) Can juvenile Atlantic salmon use multiple cue systems in spatial learning? Anim Behav 51, 1409–1415.CrossRefGoogle Scholar
  10. 10.
    Huntingford, F. A. & Wright, P. J. (1989) How sticklebacks learn to avoid dangerous feeding patches. Behav Processes 19, 181–189.CrossRefGoogle Scholar
  11. 11.
    Reese, E. S. (1989) Orientation behavior of butterflyfishes (family chaetodontidae) on coral reefs – spatial-learning of route specific landmarks and cognitive maps. Environ Biol Fishes 25, 79–86.CrossRefGoogle Scholar
  12. 12.
    Girvan, J. R. & Braithwaite, V. A. (1997) Orientation mechanisms in different populations of the three spined stickleback. Orientation and Navigation-Bird, Humans and Other Animals. United Kingdom Oxford, Royal Institute of Navigation.Google Scholar
  13. 13.
    Teyke, T. (1989) Learning and remembering the environment in the blind cave fish Anoptichthys-Jordani. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 164, 655–662.CrossRefGoogle Scholar
  14. 14.
    Metcalfe, W. K., Kimmel, C. B. & Schabtach, E. (1985) Anatomy of the posterior lateral line system in young larvae of the zebrafish. J Comp Neurol 233, 377–389.PubMedCrossRefGoogle Scholar
  15. 15.
    Schellart, N. A. M. & Wubbels, R. J. (1998) The auditory and mechanosensory lateral line system. In Evans, D. H. (Ed.) The Physiology of Fishes. 2nd ed. Boca Raton, FL, CRC Press.Google Scholar
  16. 16.
    Whitfield, T. T. (2002) Zebrafish as a model for hearing and deafness. J Neurobiol 53, 157–171.PubMedCrossRefGoogle Scholar
  17. 17.
    Aronson, L. R. (1951) Orientation and jumping behavior in the gobiid fish Bathygobius soporator. Am Mus Novit 1486, 1–22.Google Scholar
  18. 18.
    Aronson, L. R. (1971) Further studies on orientation and jumping behavior in the gobiid fish Bathygobius soporator. Ann N Y Acad Sci 188, 378–392.PubMedCrossRefGoogle Scholar
  19. 19.
    Arthur, D. & Levin, E. D. (2001) Spatial and non-spatial visual discrimination learning in zebrafish (Danio rerio). Anim Cogn 4, 125–131.CrossRefGoogle Scholar
  20. 20.
    Levin, E. D. & Chen, E. (2004) Nicotinic involvement in memory function in zebrafish. Neurotoxicol Teratol 26, 731–735.PubMedCrossRefGoogle Scholar
  21. 21.
    Levin, E. D., Limpuangthip, J., Rachakonda, T. & Peterson, M. (2006) Timing of nicotine effects on learning in zebrafish. Psychopharmacology (Berl) 184, 547–552.CrossRefGoogle Scholar
  22. 22.
    Rawashdeh, O., de Borsetti, N. H., Roman, G. & Cahill, G. M. (2007) Melatonin suppresses nighttime memory formation in zebrafish. Science 318, 1144–1146.PubMedCrossRefGoogle Scholar
  23. 23.
    Williams, F. E., White, D. & Messer, W. S. (2002) A simple spatial alternation task for assessing memory function in zebrafish. Behav Processes 58, 125–132.PubMedCrossRefGoogle Scholar
  24. 24.
    Brown, A. A., Spetch, M. L. & Hurd, P. L. (2007) Growing in circles: rearing environment alters spatial navigation in fish. Psychol Sci 18, 569–573.PubMedCrossRefGoogle Scholar
  25. 25.
    Salas, C., Broglio, C., Duran, E., Gomez, A., Ocana, F. M., Jimenez-Moya, F. & Rodriguez, F. (2006) Neuropsychology of learning and memory in teleost fish. Zebrafish 3, 157–171.PubMedCrossRefGoogle Scholar
  26. 26.
    Salas, C., Broglio, C., Rodriguez, F., Lopez, J. C., Portavella, M. & Torres, B. (1996a) Telencephalic ablation in goldfish impairs performance in a ‘spatial constancy’ problem but not in a cued one. Behav Brain Res 79, 193–200.PubMedCrossRefGoogle Scholar
  27. 27.
    Salas, C., Rodriguez, F., Vargas, J. P., Duran, E. & Torres, B. (1996b) Spatial learning and memory deficits after telencephalic ablation in goldfish trained in place and turn maze procedures. Behav Neurosci 110, 965–980.PubMedCrossRefGoogle Scholar
  28. 28.
    Vargas, J. P., Rodriguez, F., Lopez, J. C., Arias, J. L. & Salas, C. (2000) Spatial learning-induced increase in the argyrophilic nucleolar organizer region of dorsolateral telencephalic neurons in goldfish. Brain Res 865, 77–84.PubMedCrossRefGoogle Scholar
  29. 29.
    Rodriguez, F., Lopez, J. C., Vargas, J. P., Broglio, C., Gomez, Y. & Salas, C. (2002) Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish. Brain Res Bull 57, 499–503.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Joshua L. Haight
    • 1
  • Joseph A. Schroeder
    • 2
  1. 1.Behavioral Neuroscience ProgramConnecticut CollegeNew LondonUSA
  2. 2.Department of PsychologyConnecticut CollegeNew LondonUSA

Personalised recommendations