Skip to main content

Spatial Cognition in Zebrafish

  • Protocol
  • First Online:
Book cover Zebrafish Models in Neurobehavioral Research

Part of the book series: Neuromethods ((NM,volume 52))

  • 1392 Accesses

Abstract

Studies of teleost spatial cognition have revealed that fish possess an impressive array of navigational abilities and are capable of spatial memory based tasks utilizing both egocentric and allocentric cues. The emergence of zebrafish as an optimal animal model for developmental, genetic, and chemical screening investigations necessitates a better understanding of this species behavior including spatial cognition. Investigations of zebrafish spatial cognition described here reveal that zebrafish quickly learn to execute spatial tasks based on visual cues to avoid simulated predator attacks and to obtain food reward. They are also capable of memorizing spatial alternation sequences for navigational tasks and memory of these tasks is retained for several weeks. Two additional protocols designed to evaluate complex navigational behavior in zebrafish are also described. Results from preliminary studies indicate that zebrafish can learn to navigate mazes comprised of multiple directional turns with minimal aid from allocentric visual cues. The growing collection of zebrafish spatial cognition protocols and the accumulation of data from carefully designed behavioral studies when combined with what is known about the molecular neurobiology of the species will ultimately lead to a better understanding of the neurological basis of spatial cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warburton, K. (1990) The use of local landmarks by foraging goldfish. Anim Behav 40, 500–505.

    Article  Google Scholar 

  2. de Perera, T. B. (2004) Fish can encode order in their spatial map. Proc R Soc Lond B Biol Sci 271, 2131–2134.

    Article  Google Scholar 

  3. Rodriguez, F., Duran, E., Vargas, J. P., Torres, B. & Salas, C. (1994) Performance of goldfish trained in allocentric and egocentric maze procedures suggests the presence of a cognitive mapping system in fishes. Anim Learn Behav 22, 409–420.

    Article  Google Scholar 

  4. Braithwaite, V. A. (1998) Spatial memory, landmark use and orientation in fish. In Healy, S. (Ed.) Spatial Representation in Animals. New York, NY, Oxford University Press.

    Google Scholar 

  5. Braithwaite, V. A. & de Perera, T. B. (2006) Short-range orientation in fish: how fish map space. Mar Freshw Behav Physiol 39, 37–47.

    Article  Google Scholar 

  6. Levin, L. E., Belmonte, P. & Gonzalez, O. (1992) Sun-compass orientation in the characid cheirodon-pulcher. Environ Biol Fishes 35, 321–325.

    Article  Google Scholar 

  7. Walker, M. M. (1984) Learned Magnetic-Field Discrimination in yellowfin tuna, Thunnus-albacares. J Comp Physiol 155, 673–679.

    Article  Google Scholar 

  8. Mills, D. (1989) Ecology and Management of Atlantic Salmon. New York, NY, Chapman and Hall.

    Google Scholar 

  9. Braithwaite, V. A., Armstrong, J. D., Mcadam, H. M. & Huntingford, F. A. (1996) Can juvenile Atlantic salmon use multiple cue systems in spatial learning? Anim Behav 51, 1409–1415.

    Article  Google Scholar 

  10. Huntingford, F. A. & Wright, P. J. (1989) How sticklebacks learn to avoid dangerous feeding patches. Behav Processes 19, 181–189.

    Article  Google Scholar 

  11. Reese, E. S. (1989) Orientation behavior of butterflyfishes (family chaetodontidae) on coral reefs – spatial-learning of route specific landmarks and cognitive maps. Environ Biol Fishes 25, 79–86.

    Article  Google Scholar 

  12. Girvan, J. R. & Braithwaite, V. A. (1997) Orientation mechanisms in different populations of the three spined stickleback. Orientation and Navigation-Bird, Humans and Other Animals. United Kingdom Oxford, Royal Institute of Navigation.

    Google Scholar 

  13. Teyke, T. (1989) Learning and remembering the environment in the blind cave fish Anoptichthys-Jordani. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 164, 655–662.

    Article  Google Scholar 

  14. Metcalfe, W. K., Kimmel, C. B. & Schabtach, E. (1985) Anatomy of the posterior lateral line system in young larvae of the zebrafish. J Comp Neurol 233, 377–389.

    Article  PubMed  CAS  Google Scholar 

  15. Schellart, N. A. M. & Wubbels, R. J. (1998) The auditory and mechanosensory lateral line system. In Evans, D. H. (Ed.) The Physiology of Fishes. 2nd ed. Boca Raton, FL, CRC Press.

    Google Scholar 

  16. Whitfield, T. T. (2002) Zebrafish as a model for hearing and deafness. J Neurobiol 53, 157–171.

    Article  PubMed  Google Scholar 

  17. Aronson, L. R. (1951) Orientation and jumping behavior in the gobiid fish Bathygobius soporator. Am Mus Novit 1486, 1–22.

    Google Scholar 

  18. Aronson, L. R. (1971) Further studies on orientation and jumping behavior in the gobiid fish Bathygobius soporator. Ann N Y Acad Sci 188, 378–392.

    Article  PubMed  CAS  Google Scholar 

  19. Arthur, D. & Levin, E. D. (2001) Spatial and non-spatial visual discrimination learning in zebrafish (Danio rerio). Anim Cogn 4, 125–131.

    Article  Google Scholar 

  20. Levin, E. D. & Chen, E. (2004) Nicotinic involvement in memory function in zebrafish. Neurotoxicol Teratol 26, 731–735.

    Article  PubMed  CAS  Google Scholar 

  21. Levin, E. D., Limpuangthip, J., Rachakonda, T. & Peterson, M. (2006) Timing of nicotine effects on learning in zebrafish. Psychopharmacology (Berl) 184, 547–552.

    Article  CAS  Google Scholar 

  22. Rawashdeh, O., de Borsetti, N. H., Roman, G. & Cahill, G. M. (2007) Melatonin suppresses nighttime memory formation in zebrafish. Science 318, 1144–1146.

    Article  PubMed  CAS  Google Scholar 

  23. Williams, F. E., White, D. & Messer, W. S. (2002) A simple spatial alternation task for assessing memory function in zebrafish. Behav Processes 58, 125–132.

    Article  PubMed  Google Scholar 

  24. Brown, A. A., Spetch, M. L. & Hurd, P. L. (2007) Growing in circles: rearing environment alters spatial navigation in fish. Psychol Sci 18, 569–573.

    Article  PubMed  Google Scholar 

  25. Salas, C., Broglio, C., Duran, E., Gomez, A., Ocana, F. M., Jimenez-Moya, F. & Rodriguez, F. (2006) Neuropsychology of learning and memory in teleost fish. Zebrafish 3, 157–171.

    Article  PubMed  Google Scholar 

  26. Salas, C., Broglio, C., Rodriguez, F., Lopez, J. C., Portavella, M. & Torres, B. (1996a) Telencephalic ablation in goldfish impairs performance in a ‘spatial constancy’ problem but not in a cued one. Behav Brain Res 79, 193–200.

    Article  PubMed  CAS  Google Scholar 

  27. Salas, C., Rodriguez, F., Vargas, J. P., Duran, E. & Torres, B. (1996b) Spatial learning and memory deficits after telencephalic ablation in goldfish trained in place and turn maze procedures. Behav Neurosci 110, 965–980.

    Article  PubMed  CAS  Google Scholar 

  28. Vargas, J. P., Rodriguez, F., Lopez, J. C., Arias, J. L. & Salas, C. (2000) Spatial learning-induced increase in the argyrophilic nucleolar organizer region of dorsolateral telencephalic neurons in goldfish. Brain Res 865, 77–84.

    Article  PubMed  CAS  Google Scholar 

  29. Rodriguez, F., Lopez, J. C., Vargas, J. P., Broglio, C., Gomez, Y. & Salas, C. (2002) Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish. Brain Res Bull 57, 499–503.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Haight, J.L., Schroeder, J.A. (2011). Spatial Cognition in Zebrafish. In: Kalueff, A., Cachat, J. (eds) Zebrafish Models in Neurobehavioral Research. Neuromethods, vol 52. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-922-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-922-2_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-921-5

  • Online ISBN: 978-1-60761-922-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics