Advertisement

Zebrafish Ecology and Behaviour

  • Rowena Spence
Protocol
Part of the Neuromethods book series (NM, volume 52)

Abstract

The zebrafish is an important model organism in developmental genetics, neurophysiology and biomedicine, but little is known about its natural ecology and behaviour. It is a small, shoaling cyprinid, native to the flood-plains of the Indian subcontinent, where it is found in shallow, slow-flowing waters. Zebrafish are group spawners and egg scatterers, although females are selective with respect to sites for oviposition and males are territorial around such sites. Laboratory studies of zebrafish behaviour have encompassed shoaling, foraging, reproduction, sensory perception and learning. This chapter reviews these studies in relation to the suitability of the zebrafish as a model for studies in behavioural ecology.

Key words

Model organism social behaviour morphology ecology reproduction development (ontogeny) evolution (phylogeny) natural habitat diet social behaviour reproductive behaviour cognitive behaviour genetics 

References

  1. 1.
    Amsterdam, A. & Hopkins, N. (2006) Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet 22, 473–478.PubMedCrossRefGoogle Scholar
  2. 2.
    Grunwald, D. J. & Eisen, J. S. (2002) Headwaters of the zebrafish – emergence of a new model vertebrate. Nat Rev Genet 3, 717–724.PubMedCrossRefGoogle Scholar
  3. 3.
    Rubinstein, A. L. (2003) Zebrafish: from disease modelling to drug discovery. Curr Opin Drug Discov Devel 6, 218–223.PubMedGoogle Scholar
  4. 4.
    Vascotto, S. G., Beckham, Y. & Kelly, G. M. (1997) The zebrafish’s swim to fame as an experimental model in biology. Biochem Cell Biol 75, 479–485.PubMedCrossRefGoogle Scholar
  5. 5.
    Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203, 253–310.PubMedCrossRefGoogle Scholar
  6. 6.
    Creaser, C. W. (1934) The technique of handling the zebrafish (Brachydanio rerio) for the production of eggs which are favourable for embryological research and are available at any specified time throughout the year. Copeia 1934, 159–161.CrossRefGoogle Scholar
  7. 7.
    Streisinger, G., Walker, C., Dower, N., Knauber, D. & Singer, F. (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291, 293–296.PubMedCrossRefGoogle Scholar
  8. 8.
    Kimmel, C. B. (1989) Genetics and early development of zebrafish. Trends Genet 5, 283–288.PubMedCrossRefGoogle Scholar
  9. 9.
    Kimmel, C. B. (1993) Patterning the brain of the zebrafish embryo. Annu Rev Neurosci 16, 707–732.PubMedCrossRefGoogle Scholar
  10. 10.
    Kimmel, C. B., Warga, R. M. & Schilling, T. F. (1990) Origin and organization of the zebrafish fate map. Development 108, 581–594.PubMedGoogle Scholar
  11. 11.
    Granato, M. & Nüsslein-Volhard, C. (1996) Fishing for genes controlling development. Curr Opin Genet Dev 6, 461–468.PubMedCrossRefGoogle Scholar
  12. 12.
    Driever, W., Solnica-Krezel, L., Schier, A. F., Neuhauss, S. C. F., Malicki, J., Stemple, D. L., Stainier, D. Y. R., Zwartkruis, F., Abdelilah, S., Rangini, Z., Belak, J. & Boggs, C. (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46.PubMedGoogle Scholar
  13. 13.
    Haffter, P., Granato, M., Brand, M., Mullins, M. C., Hammerschmidt, M., Kane, D. A., Odenthal, J., Van Eeden, F. J. M., Jiang, Y. J., Heisenberg, C. P., Kelsh, R. N., Furutani-Seiki, M., Vogelsang, E., Beuchle, D., Schach, U., Fabian, C. & Nüsslein-Volhard, C. (1996a) The identification of genes with unique and essential function in the development of the zebrafish, Danio rerio. Development 123, 1–36.PubMedGoogle Scholar
  14. 14.
    Amsterdam, A., Burgess, S., Golling, G., Chen, W., Sun, Z., Townsend, K., Farrington, S., Haldi, M. & Hopkins, N. (1999) A large scale insertional mutagenesis screen in zebrafish. Genes Dev 13, 2413–2724.CrossRefGoogle Scholar
  15. 15.
    Chen, E. & Ekker, S. C. (2004) Zebrafish as a genomics research model. Curr Pharm Biotechnol 5, 409–413.PubMedCrossRefGoogle Scholar
  16. 16.
    Eggert, U. S. & Mitchison, T. J. (2006) Small molecule screening by imaging. Curr Opin Chem Biol 10, 232–237.PubMedCrossRefGoogle Scholar
  17. 17.
    Golling, G., Amsterdam, A., Sun, Z., Antonelli, M., Maldonado, E., Chen, W., Burgess, S., Haldi, M., Artzt, K., Farrington, S., Lin, S., Nissen, R. & Hopkins, N. (2002) Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet 31, 135–140.PubMedCrossRefGoogle Scholar
  18. 18.
    Guo, S. (2004) Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish? Genes Brain Behav 3, 63–74.PubMedCrossRefGoogle Scholar
  19. 19.
    Patton, E. E. & Zon, L. I. (2001) The art and design of genetic screens: zebrafish. Nat Rev Genet 2, 956–966.PubMedCrossRefGoogle Scholar
  20. 20.
    Postlethwait, J. H. & Talbot, W. S. (1997) Zebrafish genomics: from mutants to genes. Trends Genet 13, 183–190.PubMedCrossRefGoogle Scholar
  21. 21.
    Sood, R., English, M. A., Jones, M., Mullikin, J., Wang, D. M., Anderson, M., Wu, D., Chandrasekharappa, S. C., Yu, J., Zhang, J. & Paul Liu, P. (2006) Methods for reverse genetic screening in zebrafish by resequencing and TILLING. Methods 39, 220–227.PubMedCrossRefGoogle Scholar
  22. 22.
    Udvadia, A. J. & Linney, E. (2003) Windows into development: historic, current, and future perspectives on transgenic zebrafish. Dev Biol 256, 1–17.PubMedCrossRefGoogle Scholar
  23. 23.
    Dooley, K. & Zon, L. I. (2000) Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev 10, 252–256.PubMedCrossRefGoogle Scholar
  24. 24.
    Lieschke, G. J. & Currie, P. D. (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8, 352–367.CrossRefGoogle Scholar
  25. 25.
    Shin, J. T. & Fishman, M. C. (2002) From zebrafish to human: modular medical models. Annu Rev Genom Hum Genet 3, 311–340.CrossRefGoogle Scholar
  26. 26.
    Berghmans, S., Jette, C., Langenau, D., Hsu, K., Stewart, R., Look, T. & Kanki, J. P. (2005) Making waves in cancer research: new models in the zebrafish. Biotechniques 39, 227–237.PubMedCrossRefGoogle Scholar
  27. 27.
    Guyon, J. R., Steffen, L. S., Howell, M. H., Pusack, T. J., Lawrence, C. & Kunkel, L. M. (2006) Modeling human muscle disease in zebrafish. Biochim Biophys Acta 1772, 205–215.PubMedGoogle Scholar
  28. 28.
    Rubinstein, A. L. (2006) Zebrafish assays for drug toxicity screening. Expert Opin Drug Metab Toxicol 2, 231–240.PubMedCrossRefGoogle Scholar
  29. 29.
    Barbazuk, W. B., Korf, I., Kadavi, C., Heyen, J., Tate, S., Wun, E., Bedell, J. A., McPherson, J. A. & Johnson, S. L. (2000) The syntenic relationship of the zebrafish and human genomes. Genome Res 10, 1351–1358.PubMedCrossRefGoogle Scholar
  30. 30.
    Postlethwait, J. H., Yan, Y.-L., Gates, M. A., Horne, S., Amores, A., Brownlie, A., Donovan, A., Egan, E. S., Force, A., Gong, Z., Goute, C., Fritz, A., Kelsh, R., Knapik, E., Liao, E., Paw, B., Ransom, D., Singer, A., Thomson, M., Abduljabbar, T. S., Yelick, P., Beier, D., Joly, J.-S., Larhammar, D., Rosa, F., Westerfield, M., Zon, L. I., Johnson, S. L. & Talbot, W. S. (1998) Vertebrate genome evolution and the zebrafish gene map. Nat Genet 18, 345–349.PubMedCrossRefGoogle Scholar
  31. 31.
    Gerlai, R. (2003) Zebrafish: an uncharted behavior genetic model. Behav Genet 33, 461–468.PubMedCrossRefGoogle Scholar
  32. 32.
    Miklósi, A. & Andrew, R. J. (2006) The zebrafish as a model for behavioural studies. Zebrafish 3, 227–234.PubMedCrossRefGoogle Scholar
  33. 33.
    Robison, B. D. & Rowland, W. (2005) A potential model system for studying the genetics of domestication: behavioral variation among wild and domesticated strains of zebra danio (Danio rerio). Can J Fish Aquat Sci 62, 2046–2054.CrossRefGoogle Scholar
  34. 34.
    Wright, D., Nakamichi, R., Krause, J. & Butlin, R. K. (2006a) QTL analysis of behavioural and morphological differentiation between wild and laboratory zebrafish (Danio rerio). Behav Genet 36, 271–284.PubMedCrossRefGoogle Scholar
  35. 35.
    Nelson, J. S. (2006) Fishes of the World. 4th edn. New York, NY, Wiley.Google Scholar
  36. 36.
    Fang, F. (2001) Phylogeny and species diversity of the South and Southeast Asian cyprinid genus Danio Hamilton (Teleostei, Cyprinidae). PhD Thesis, Stockholm University, Stockholm, Sweden.Google Scholar
  37. 37.
    Barman, R. P. (1991) A taxonomic revision of the Indo-Burmese species of Danio rerio. Rec Zool Surv India Occas Pap 137, 1–91.Google Scholar
  38. 38.
    Talwar, P. K. & Jhingran, A. G. (1991) Inland Fishes of India and Adjacent Countries. Calcutta, Oxford & I. B. H. Publishing.Google Scholar
  39. 39.
    Howes, G. J. (1991) Systematics and biogeography: an overview. In Winfield, I. J. & Nelson, J. S. (Eds.) Cyprinid Fishes Systematics, Biology and Exploitation. London, Chapman and Hall, pp. 1–33.CrossRefGoogle Scholar
  40. 40.
    Weber, M. & de Beaufort, L. f. (1916) The Fishes of the Indo-Australian Archipelago. London, E. J. Brill.Google Scholar
  41. 41.
    Meyer, A., Biermann, C. H. & Orti, G. (1993) The phylogenetic position of the zebrafish (Danio rerio), a model system in developmental biology: an invitation to the comparative method. Proc R Soc Lond Ser B 252, 231–236.CrossRefGoogle Scholar
  42. 42.
    Meyer, A., Ritchie, A. P. & Witte, K.-E. (1995) Predicting developmental processes from evolutionary patterns: a molecular phylogeny of the zebrafish (Danio rerio) and its relatives. Philos Trans R Soc Lond Ser B 349, 103–111.CrossRefGoogle Scholar
  43. 43.
    McClure, M. (1999) Development and evolution of melanophore patterns in fishes of the genus Danio (Teleostei: Cyprinidae). J Morphol 241, 83–105.PubMedCrossRefGoogle Scholar
  44. 44.
    Parichy, D. M. & Johnson, S. L. (2001) Zebrafish hybrids suggest genetic mechanisms for pigment pattern diversification in Danio. Dev Genes Evol 211, 319–328.PubMedCrossRefGoogle Scholar
  45. 45.
    Quigley, I. K., Roberts, R., Manuel, J. L., Nuckels, R. J., Herrington, E., MacDonald, E. L. & Parichy, D. M. (2005) Evolutionary diversification of pigment pattern in Danio fishes: differential fms dependence and stripe loss in D. albolineatus. Development 132, 89–104.Google Scholar
  46. 46.
    Quigley, I. K., Turner, J. M., Nuckels, R. J., Manuel, J. L., Budi, E. H., MacDonald, E. L. & Parichy, D. M. (2004) Pigment pattern evolution by differential deployment of neural crest and post-embryonic melanophore lineages in Danio fishes. Development 131, 6053–6069.Google Scholar
  47. 47.
    Sanger, T. J. & McCune, A. R. (2002) Comparative osteology of the Danio (Cyprinidae: Ostariophysi) axial skeleton with comments on Danio relationships based on molecules and morphology. Zool J Linnean Soc 135, 529–546.CrossRefGoogle Scholar
  48. 48.
    Fang, F. (2003) Phylogenetic analysis of the Asian cyprinid genus Danio (Teleostei, Cyprinidae). Copeia 4, 714–728.CrossRefGoogle Scholar
  49. 49.
    Mayden, R. L., Tang, K. L., Conway, K. W., Freyhof, J., Chamberlain, S., Haskins, M., Schneider, L., Sudkamp, M., Wood, R. M., Agnew, M., Bufalino, A., Sulaiman, Z., Miya, M., Saitoh, K. & He, S. (2007) Phylogenetic relationships of Danio within the order cypriniformes: a framework for comparative and evolutionary studies of a model species. J Exp Zool (Mol Dev Evol) 308B, 642–654.CrossRefGoogle Scholar
  50. 50.
    Parichy, D. M. (2006a) Evolution of danio pigment pattern development. Heredity 97, 200–210.PubMedCrossRefGoogle Scholar
  51. 51.
    Parichy, D. M. (2006b) Homology and the evolution of novelty during Danio adult pigment pattern development. J Exp Zool 306B, 1–13.CrossRefGoogle Scholar
  52. 52.
    Hatamoto, K. & Shingyoji, C. (2008) Cyclical training enhances the melanophore responses of zebrafish to background colours. Pigment Cell Melanoma Res 21, 397–406.PubMedCrossRefGoogle Scholar
  53. 53.
    Larson, E. T., O’Malley, D. M. & Melloni, R. H., Jr. (2006) Aggression and vasotocin are associated with dominant-subordinate relationships in zebrafish. Behav Brain Res 167, 94–102.PubMedCrossRefGoogle Scholar
  54. 54.
    Laale, H. W. (1977) The biology and use of zebrafish, Brachydanio rerio in fisheries research. A literature review. J Fish Biol 10, 121–173.CrossRefGoogle Scholar
  55. 55.
    Schilling, T. (2002) The morphology of larval and adult zebrafish. In Nüsslein-Volhard, C. & Dahm, R. (Eds.) Zebrafish. Oxford, Oxford University Press, pp. 59–94.Google Scholar
  56. 56.
    Meinken, H. (1963) Brachydanio frankei spec. nov., der Leopard danio. Aquarium Terrararien 10, 39–43.Google Scholar
  57. 57.
    Fang, F. (1998) Danio kyathit, a new species of cyprinid fish from Myitkyina, northern Myanmar. Ichthyol Explor Freshw 8, 273–280.Google Scholar
  58. 58.
    Petrovicky, I. (1966) Hybridization between Brachydanio rerio (Hamilton-Buchanan) and Brachydanio frankei (Meinken). Ichthyologica 37, 53–62.Google Scholar
  59. 59.
    Haffter, P., Odenthal, J., Mullins, M. C., Lin, S., Farrell, M. J., Vogelsang, E., Haas, F., Brand, M., van Eeden, F. J. M., Furutani-Seiki, M., Granato, M., Hammerschmidt, M., Heisenberg, C. P., Jiang, Y. J., Kane, D. A., Kelsh, R. N., Hopkins, N. & Nüsslein-Volhard, C. (1996b) Mutations affecting pigmentation and shape of the adult zebrafish. Dev Genes Evol 206, 260–276.CrossRefGoogle Scholar
  60. 60.
    Watanabe, M., Iwashita, M., Ishii, M., Kurachi, Y., Kawakami, A., Kondo, S. & Okada, n. (2006) Spot pattern of leopard Danio is caused by mutation in the zebrafish connexin41.8 gene. EMBO Rep 7, 893–897.PubMedCrossRefGoogle Scholar
  61. 61.
    Plaut, I. (2000) Effects of fin size on swimming performance, swimming behaviour and routine activity of zebrafish Danio rerio. J Exp Biol 203, 813–820.PubMedGoogle Scholar
  62. 62.
    Kelsh, R. N., Brand, M., Jiang, Y. J., Heisenberg, C. P., Lin, S., Haffter, P., Odenthal, J., Mullins, M. C., van Eeden, F. J. M., Furutani-Seiki, M., Granato, M., Hammerschmidt, M., Kane, D. A., Warga, R. M., Beuchle, D., Vogelsang, L. & Nusslein-Volhard, C. (1996) Zebrafish pigmentation mutations and the processes of neural crest development. Development 123, 369–389.PubMedGoogle Scholar
  63. 63.
    Kawakami, K., Amsterdam, A., Nobuyoshi, S., Becker, T., Mugg, J., Shima, A. & Hopkins, N. (2000) Proviral insertions in the zebrafish hagoromogene, encoding an F-box/WD40-repeat protein, cause stripe pattern anomalies. Curr Biol 10, 463–466.PubMedCrossRefGoogle Scholar
  64. 64.
    Lamason, R. L., Mohideen, M. A., Mest, J. R., Wong, A. C., Norton, H. L., Aros, M. C., Jurynec, M. J., Mao, X., Humphreville, V. R., Humbert, J. E., Sinha, S., Moore, J. L., Jagadeeswaran, P., Zhao, W., Ning, G., Makalowska, I., McKeigue, P. M., O’donnell, D., Kittles, R., Parra, E. J., Mangini, N. J., Grunwald, D. J., Shriver, M. D., Canfield, V. A. & Cheng, K. C. (2005) SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310, 1782–1786.PubMedCrossRefGoogle Scholar
  65. 65.
    Lister, J. A., Robertson, C. P., Lepage, T., Johnson, S. L. & Raible, D. W. (1999) nacre encodes a zebrafish microphthalmia-related protein that regulates neural crest-derived pigment cell fate. Development 126, 3757–3767.PubMedGoogle Scholar
  66. 66.
    Spence, R., Fatema, M. K., Reichard, M., Huq, K. A., Wahab, M. A., Ahmed, Z. F. & Smith, C. (2006a) The distribution and habitat preferences of the zebrafish in Bangladesh. J Fish Biol 69, 1435–1448.CrossRefGoogle Scholar
  67. 67.
    Pritchard, V. L. (2001) Behaviour and morphology of the zebrafish, Danio rerio. PhD thesis, University of Leeds.Google Scholar
  68. 68.
    McClure, M. M., McIntyre, P. B. & McCune, A. R. (2006) Notes on the natural diet and habitat of eight danionin fishes, including the zebrafish, Danio rerio. J Fish Biol 69, 553–570.CrossRefGoogle Scholar
  69. 69.
    Dutta, S. P. S. (1993) Food and feeding habits of Danio rerio (Ham. Buch.) inhabiting Gadigarh stream, Jammu. J Freshw Biol 5, 165–168.Google Scholar
  70. 70.
    Sterba, G. (1962) Freshwater Fishes of the World. London, Vista Books, Longacre Press.Google Scholar
  71. 71.
    Jayaram, K. C. (1999) The Freshwater Fishes of the Indian Region. Delhi, Narendra Publishing House.Google Scholar
  72. 72.
    Daniels, R. J. R. (2002) Freshwater Fishes of Peninsula India. Hyderabad, Universities Press.Google Scholar
  73. 73.
    Engeszer, R. E., Patterson, L. B., Rao, A. A. & Parichy, D. M. (2007a) Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish 4, 21–40.PubMedCrossRefGoogle Scholar
  74. 74.
    Spence, R., Fatema, M. K., Ellis, S., Ahmed, Z. F. & Smith, C. (2007b) The diet, growth and recruitment of wild zebrafish (Danio rerio) in Bangladesh. J Fish Biol 71, 304–309.CrossRefGoogle Scholar
  75. 75.
    Eaton, R. C. & Farley, R. D. (1974a) Growth and reduction of depensation of the zebrafish Brachydanio rerio, reared in the laboratory. Copeia 1974, 204–209.CrossRefGoogle Scholar
  76. 76.
    Wright, D., Butlin, R. K. & Carlborg, Ö. (2006b) Epistatic regulation of behavioural and morphological traits in the zebrafish (Danio rerio). Behav Genet 36, 914–922.PubMedCrossRefGoogle Scholar
  77. 77.
    Eaton, R. C. & Farley, R. D. (1974b) Spawning cycle and egg production of zebrafish, Brachydanio rerio, in the laboratory. Copeia 1974, 195–204.CrossRefGoogle Scholar
  78. 78.
    Talling, J. F. & Lemoalle, J. (1998) Ecological Dynamics of Tropical Inland Waters. Cambridge, Cambridge University Press.Google Scholar
  79. 79.
    Gerhard, G. S., Kauffman, E. J., Wang, X., Stewart, R., Moore, J. L., Kasales, C. J., Demidenko, E. & Cheng, K. C. (2002) Life spans and senescent phenotypes of zebrafish (Danio rerio). Exp Gerontol 37, 1055–1068.PubMedCrossRefGoogle Scholar
  80. 80.
    Kishi, S., Uchiyama, J., Baughman, A. M., Goto, T., Lin, M. C. & Tsai, S. B. (2003) The zebrafish as a vertebrate model of functional aging and very gradual senescence. Exp Gerontol 38, 777–786.PubMedCrossRefGoogle Scholar
  81. 81.
    Dill, L. M. (1974a) The escape response of the zebra danio (Brachydanio rerio) I. The stimulus for escape. Anim Behav 22, 711–722.CrossRefGoogle Scholar
  82. 82.
    Dill, L. M. (1974b) The escape response of the zebra danio (Brachydanio rerio) II. The effect of experience.. Anim Behav 22, 723–730.CrossRefGoogle Scholar
  83. 83.
    Bass, S. L. S. & Gerlai, R. (2008) Zebrafish (Danio rerio) responds differentially to stimulus fish: the effects of sympatric and allopatric predators and harmless fish. Behav Brain Res 186, 107–117.PubMedCrossRefGoogle Scholar
  84. 84.
    Pfeiffer, W. (1974) Pheromones in fish and amphibia. In Birch, M. C. (Ed.) Pheromones. Amsterdam, North Holland Publishing Company, pp. 269–296.Google Scholar
  85. 85.
    Wisenden, B. D., Vollbrecht, K. A. & Brown, J. L. (2004) Is there a fish alarm cue? Affirming evidence from a wild study. Anim Behav 67, 59–67.CrossRefGoogle Scholar
  86. 86.
    Speedie, N. & Gerlai, R. (2008) Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav Brain Res 188, 168–177.PubMedCrossRefGoogle Scholar
  87. 87.
    Rehnberg, B. G. & Smith, R. J. F. (1988) The influence of alarm substance and shoal size on the behaviour of zebra danios, Brachydanio rerio (Cyprinidae). J Fish Biol 33, 155–163.CrossRefGoogle Scholar
  88. 88.
    Spitzbergen, J. M. & Kent, M. L. (2003) The state of the art of the zebrafish model for toxicology and toxicologic pathology research – advantages and current limitations. Toxicol Pathol 31S, 62–87.Google Scholar
  89. 89.
    Kent, M. L., Bishop-Stewart, J. K., Matthews, J. L. & Spitzbergen, J. M. (2002) Pseudocapillaria tomentosa, a nematode pathogen and associated neoplasms of zebrafish (Danio rerio) kept in research colonies. Comp Med 52, 354–358.PubMedGoogle Scholar
  90. 90.
    Devlin, R. H. & Nagahama, Y. (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191–364.CrossRefGoogle Scholar
  91. 91.
    Maack, G. & Segner, H. (2003) Morphological development of the gonads in zebrafish. J Fish Biol 62, 895–906.CrossRefGoogle Scholar
  92. 92.
    Lawrence, C., Ebersole, J. P. & Kesseli, R. V. (2007) Rapid growth and out-crossing promote female development in zebrafish (Danio rerio). Environ Biol Fishes, DOI: 10.1007/s10641-007-9195-8.Google Scholar
  93. 93.
    Spence, R. & Smith, C. (2006) Mating preference of female zebrafish, Danio rerio, in relation to male dominance. Behav Ecol 17, 779–783.CrossRefGoogle Scholar
  94. 94.
    van den Hurk, R. & Lambert, J. G. D. (1983) Ovarian steroid glucuronides function as sex pheromones for male zebrafish, Brachydanio rerio. Can J Zool 61, 2381–2387.CrossRefGoogle Scholar
  95. 95.
    van den Hurk, R., Schoonen, W. G. E. J., van Zoelen, G. A. & Lambert, J. G. D. (1987) The biosynthesis of steroid glucuronides in the testis of the zebrafish, Brachydanio rerio, and their pheromonal function as ovulation inducers. Gen Comp Endocrinol 68, 179–188.PubMedCrossRefGoogle Scholar
  96. 96.
    Hisaoka, K. K. & Firlit, C. F. (1962) Ovarian cycle and egg production in the zebrafish, Brachydanio rerio (Hamilton-Buchanan). Copeia 1962, 788–792.CrossRefGoogle Scholar
  97. 97.
    Gerlach, G. (2006) Pheromonal regulation of reproductive success in female zebrafish: female suppression and male enhancement. Anim Behav 72, 1119–1124.CrossRefGoogle Scholar
  98. 98.
    Bloom, H. D. & Perlmutter, A. (1977) A sexual aggregating pheromone system in the zebrafish, Brachydanio rerio (Hamilton-Buchanan). J Exp Biol 199, 215–226.Google Scholar
  99. 99.
    Lee, K. W., Webb, S. E. & Miller, A. L. (1999) A wave of free cytosolic calcium traverses zebrafish eggs on activation. Dev Biol 214, 168–180.PubMedCrossRefGoogle Scholar
  100. 100.
    Goolish, E. M. & Okutake, K. (1999) Lack of gas bladder inflation by the larvae of zebrafish in the absence of an air-water interface. J Fish Biol 55, 1054–1063.Google Scholar
  101. 101.
    Breder, C. M. & Rosen, D. E. (1966) Modes of Reproduction in Fishes. New York, NY, Natural History Press.Google Scholar
  102. 102.
    Baganz, D., Siegmund, R., Staaks, G., Pflugmacher, S. & Steinberg, C. E. W. (2005) Temporal pattern in swimming activity of two fish species (Danio rerio and Leucaspius delineatus) under chemical stress conditions. Biol Rhythm Res 36, 263 – 276.CrossRefGoogle Scholar
  103. 103.
    Darrow, K. O. & Harris, W. A. (2004) Characterisation and development of courtship in zebrafish, Danio rerio. Zebrafish 1, 40–45.PubMedCrossRefGoogle Scholar
  104. 104.
    Spence, R., Ashton, R. L. & Smith, C. (2007a) Adaptive oviposition decisions are mediated by spawning site quality in the zebrafish, Danio rerio. Behaviour 144, 953–966.CrossRefGoogle Scholar
  105. 105.
    Spence, R. & Smith, C. (2005) Male territoriality mediates density and sex ratio effects on oviposition in the zebrafish (Danio rerio). Anim Behav 69, 1317–1323.CrossRefGoogle Scholar
  106. 106.
    Spence, R., Jordan, W. C. & Smith, C. (2006b) Genetic analysis of male reproductive success in relation to density in the zebrafish, Danio rerio. Front Zool 3, 5.PubMedCrossRefGoogle Scholar
  107. 107.
    Paull, G. A., van Look, K. J. W., Santos, E. M., Filby, A. L., Gray, M., Nasha, J. P. & Tyler, C. R. (2008) Variability in measures of reproductive success in laboratory-kept colonies of zebrafish and implications for studies addressing population-level effects of environmental chemicals. Aquat Toxicol 87, 115–126.PubMedCrossRefGoogle Scholar
  108. 108.
    Delaney, M., Follet, C., Ryan, N., Hanney, N., Lusk-Yablick, J. & Gerlach, G. (2002) Social interaction and distribution of female zebrafish (Danio rerio) in a large aquarium. Biol Bull 203, 240–241.PubMedCrossRefGoogle Scholar
  109. 109.
    Golubev, A. V. (1984) Role of chemical stimuli in group and spawning behavior of zebrafish, Brachydanio rerio. Voprosy Ikhtiologii 6, 1020–1027.Google Scholar
  110. 110.
    Pyron, M. (2003) Female preferences and male-male interactions in zebrafish (Danio rerio). Can J Zool 81, 122–125.CrossRefGoogle Scholar
  111. 111.
    Wootton, R. J. (1998) The Ecology of Teleost Fishes. Dordrecht, Kluwer.Google Scholar
  112. 112.
    Gerlach, G. & Lysiak, N. (2006) Kin recognition and inbreeding avoidance in zebrafish, Danio rerio, is based on phenotype matching. Anim Behav 71, 1371–1377.CrossRefGoogle Scholar
  113. 113.
    Sessa, A. K., White, R., Houvras, Y., Burke, C., Pugach, E., Baker, B., Gilbert, R., Look, A. T. & Zon, L. I. (2008) The effect of a depth gradient on the mating behaviour, oviposition site preference and embryo production in the zebrafish, Danio rerio. Zebrafish 5, 335–360.PubMedCrossRefGoogle Scholar
  114. 114.
    Gerlach, G., Hodgins-Davis, A., MacDonald, B. & Hannah, R. C. (2007) Benefits of kin association: related and familiar zebrafish larvae (Danio rerio) show improved growth. Behav Ecol Sociobiol 6, 1765–1770.CrossRefGoogle Scholar
  115. 115.
    Engeszer, R. E., da Barbiano, L. A., Ryan, M. J. & Parichy, D. M. (2007b) Timing and plasticity of shoaling behaviour in the zebrafish, Danio rerio. Anim Behav 74, 1269–1275.PubMedCrossRefGoogle Scholar
  116. 116.
    Miller, N. & Gerlai, R. (2007) Quantification of shoaling behaviour in zebrafish (Danio rerio). Behav Brain Res 184, 157–166.PubMedCrossRefGoogle Scholar
  117. 117.
    Kerr, J. P. (1963) Grouping behaviour of the zebrafish as influenced by social isolation. Am Zool 2, 532–533.Google Scholar
  118. 118.
    McCann, L. I. & Matthews, J. J. (1974) The effects of lifelong isolation on species identification in zebra fish (Brachydanio rerio). Dev Psychobiol 7, 159–163.PubMedCrossRefGoogle Scholar
  119. 119.
    McCann, L. I. & Carlson, C. C. (1982) Effect of cross-rearing on species identification in zebra fish and pearl danios. Dev Psychobiol 15, 71–74.PubMedCrossRefGoogle Scholar
  120. 120.
    Engeszer, R. E., Ryan, M. J. & Parichy, D. M. (2004) Learned social preference in zebrafish. Curr Biol 14, 881–884.PubMedCrossRefGoogle Scholar
  121. 121.
    Rosenthal, G. G. & Ryan, M. J. (2005) Assortative preferences for stripes in danios. Anim Behav 70, 1063–1066.CrossRefGoogle Scholar
  122. 122.
    Gerlach, G., Hodgins-Davis, A., Avolio, C. & Schunter, C. (2008) Kin recognition in zebrafish: a 24-hour window for olfactory imprinting. Proc R Soc Lond B 275, 2165–2170.CrossRefGoogle Scholar
  123. 123.
    Grant, J. W. A. & Kramer, D. L. (1992) Temporal clumping of food arrival reduces its monopolization and defense by zebrafish, Brachydanio rerio. Anim Behav 44, 101–110.CrossRefGoogle Scholar
  124. 124.
    Pritchard, V. L., Lawrence, J., Butlin, R. K. & Krause, J. (2001) Shoal choice in zebrafish, Danio rerio: the influence of shoal size and activity. Anim Behav 62, 1085–1088.CrossRefGoogle Scholar
  125. 125.
    Rhul, N. & McRobert, S. P. (2005) The effect of sex and shoal size on shoaling behaviour in Danio rerio. J Fish Biol 67, 1318–1326.CrossRefGoogle Scholar
  126. 126.
    Krause, J., Hartmann, N. & Pritchard, V. L. (1999) The influence of nutritional state on shoal choice in zebrafish, Danio rerio. Anim Behav 57, 771–775.PubMedCrossRefGoogle Scholar
  127. 127.
    Spence, R. & Smith, C. (2007) The role of early learning in determining social preferences based on visual cues in the zebrafish, Danio rerio. Ethology 113, 62–67.CrossRefGoogle Scholar
  128. 128.
    Kitevski, B. & Pyron, M. (2003) Female zebrafish (Danio rerio) do not prefer mutant longfin males. J Freshw Ecol 18, 501–502.CrossRefGoogle Scholar
  129. 129.
    Snekser, J. L., McRobert, S. P., Murphy, C. E. & Clotfelter, E. D. (2006) Aggregation behavior in wildtype and transgenic zebrafish. Ethology 112, 181–187.CrossRefGoogle Scholar
  130. 130.
    Engeszer, R. E., Wang, G., Ryan, M. J. & Parichy, D. M. (2008) Sex-specific perceptual spaces for a vertebrate basal social aggregative behaviour. Proc Natl Acad Sci USA 105, 929–933.PubMedCrossRefGoogle Scholar
  131. 131.
    Saverino, C. & Gerlai, R. (2008) The social zebrafish: behavioral responses to conspecific, heterospecific, and computer animated fish. Behav Brain Res 191, 77–87.PubMedCrossRefGoogle Scholar
  132. 132.
    Hamilton, I. M. & Dill, L. M. (2002) Monopolization of food by zebrafish (Danio rerio) increases in risky habitats. Can J Zool 80, 2164–2169.CrossRefGoogle Scholar
  133. 133.
    Basquill, S. P. & Grant, J. W. A. (1998) An increase in habitat complexity reduces aggression and monopolization of food by zebra fish (Danio rerio). Can J Zool 76, 770–772.Google Scholar
  134. 134.
    Gillis, D. M. & Kramer, D. L. (1987) Ideal interference distributions: population density and patch use by zebrafish. Anim Behav 35, 1875–1882.CrossRefGoogle Scholar
  135. 135.
    Fretwell, S. D. & Lucas, H. L. (1970) On territorial behaviour and other factors influencing habitat distribution in birds. I Theoretical development. Acta Biotheor 19, 16–36.CrossRefGoogle Scholar
  136. 136.
    Marks, C., West, T. N., Bagatto, B. & Moore, F. B. G. (2005) Developmental environment alters conditional aggression in zebrafish. Copeia 2005, 901–908.CrossRefGoogle Scholar
  137. 137.
    Pitcher, T. J. & Parrish, J. K. (1993) Functions of shoaling behaviour in teleosts. In Pitcher, T. J. (Ed.) Behaviour of Teleost Fishes. London, Chapman and Hall, pp. 363–439.CrossRefGoogle Scholar
  138. 138.
    Wright, D., Rimmer, L. B., Pritchard, V. L., Krause, J. & Butlin, R. K. (2003) Inter and intra-population variation in shoaling and boldness in the zebrafish (Danio rerio). Naturwissenschaften 90, 374–377.PubMedCrossRefGoogle Scholar
  139. 139.
    Moretz, J. A., Martins, E. P. & Robison, B. (2006) The effects of early and adult social environment on zebrafish (Danio rerio) behavior. Environ Biol Fishes 80, 91–101.CrossRefGoogle Scholar
  140. 140.
    Moretz, J. A., Martins, E. P. & Robison, B. (2007) Behavioral syndromes and the evolution of correlated behaviour in zebrafish. Behav Ecol 18, 556–562.CrossRefGoogle Scholar
  141. 141.
    Suboski, M. D., Bain, S., Carty, A. E., McQuoid, L. M., Seelen, M. I. & Seifert, M. (1990) Alarm reaction in acquisition and social transmission of simulated-predator recognition by zebra danio fish (Brachydanio rerio). J Comp Psychol 104, 101–112.CrossRefGoogle Scholar
  142. 142.
    Hall, D. & Suboski, M. D. (1995a) Visual and olfactory stimuli in learned release of alarm reactions by zebra danio fish (Brachydanio rerio). Neurobiol Learn Mem 63, 229–240.PubMedCrossRefGoogle Scholar
  143. 143.
    Hall, D. & Suboski, M. D. (1995b) Sensory preconditioning and second order conditioning of alarm reactions in zebra danio fish. J Comp Psychol 109, 76–84.CrossRefGoogle Scholar
  144. 144.
    Korpi, N. L. & Wisenden, B. D. (2001) Learned recognition of novel predator odour by zebra danios, Danio rerio, following time-shifted presentation of alarm cue and predator odour. Environ Biol Fishes 61, 205–211.CrossRefGoogle Scholar
  145. 145.
    Braithwaite, V. A. (1998) Spatial memory, landmark use and orientation in fish. In Healy, S. (Ed.) Spatial Representation in Animals. Oxford, Oxford University Press, pp. 86–102.Google Scholar
  146. 146.
    Williams, F. E., White, D. & Messer, W. S., Jr. (2002) A simple spatial alternation task for assessing memory function in zebrafish. Behav Processes 58, 125–132.PubMedCrossRefGoogle Scholar
  147. 147.
    Bilotta, J., Risner, M. L., Davis, E. C. & Haggbloom, S. J. (2005) Assessing appetitive choice discrimination learning in zebrafish. Zebrafish 2, 251–268.CrossRefGoogle Scholar
  148. 148.
    Colwill, R. M., Raymond, M. P., Ferreira, L. & Escudero, H. (2005) Visual discrimination learning in zebrafish (Danio rerio). Behav Processes 70, 19–31.PubMedCrossRefGoogle Scholar
  149. 149.
    Al-Imari, L. & Gerlai, R. (2008) Sight of conspecifics as reward in associative learning in zebrafish (Danio rerio). Behav Brain Res 189, 216–219.PubMedCrossRefGoogle Scholar
  150. 150.
    Pather, S. & Gerlai, R. (2009) Shuttle box learning in zebrafish (Danio rerio). Behav Brain Res 196, 323–327.PubMedCrossRefGoogle Scholar
  151. 151.
    Odling-Smee, L. & Braithwaite, V. A. (2003) The role of learning in fish orientation. Fish Fish 4, 234–246.CrossRefGoogle Scholar
  152. 152.
    Braithwaite, V. A. (2005) Cognitive ability in fish. Fish Physiol 24, 1–37.CrossRefGoogle Scholar
  153. 153.
    Brown, C. & Laland, K. (2003) Social learning in fishes: a review. Fish Fish 4, 280–288.CrossRefGoogle Scholar
  154. 154.
    Gleason, P. E., Weber, P. G. & Weber, S. P. (1977) Effect of group size on avoidance learning in zebrafish, Brachydanio rerio, (Pisces: Cyprinidae). Anim Learn Behav 5, 213–216.CrossRefGoogle Scholar
  155. 155.
    Steele, C. W., Scarfe, A. D. & Owens, D. W. (1991) The effects of group size on the responsiveness of zebrafish (Brachydanio rerio) to alanine, a chemical attractant. J Fish Biol 38, 553–564.CrossRefGoogle Scholar
  156. 156.
    Miklósi, A. & Andrew, R. J. (1999) Right eye use associated with decision to bite in zebrafish. Behav Brain Res 105, 199–205.PubMedCrossRefGoogle Scholar
  157. 157.
    Basolo, A. L. (2000) Problems in studying receiver biases and their effects on signal evolution. In Epsmark, Y., Amundsen, T. & Rosenqvist, G. (Eds.) Animal Signals: Signalling and Signal Design in Animal Communication. Trondheim, Tapir Academic Press, pp. 177–193.Google Scholar
  158. 158.
    Spence, R. & Smith, C. (2008) Innate and learned colour preference in the zebrafish, Danio rerio. Ethology 114, 582–588.CrossRefGoogle Scholar
  159. 159.
    Serra, E. L., Medalha, C. C. & Mattioli, R. (1999) Natural preference of zebrafish (Danio rerio) for a dark environment. Braz J Med Biol Res 32, 1551–1553.PubMedCrossRefGoogle Scholar
  160. 160.
    Gerlai, R., Lahav, M., Guo, S. & Rosenthal, A. (2000) Drinks like a fish: zebrafish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67, 773–782.PubMedCrossRefGoogle Scholar
  161. 161.
    Sokolowski, M. B. (2001) Drosophila: genetics meets behaviour. Nat Rev Genet 2, 879–890.PubMedCrossRefGoogle Scholar
  162. 162.
    Anholt, R. R. H. & Mackay, T. F. C. (2004) Quantitative genetic analysis of complex behaviours in Drosophila. Nat Reviews Genet 5, 838–849.CrossRefGoogle Scholar
  163. 163.
    Fitzpatrick, M. J., Ben-Shahar, Y., Smid, H. M., Vet, L. E. M., Robinson, G. E. & Sokolowski, M. B. (2000) Candidate genes for behavioural ecology. Trends Ecol Evol 20, 96–104.CrossRefGoogle Scholar
  164. 164.
    Vasemägi, A. & Primmer, C. R. (2005) Challenges for identifying functionally important genetic variation: the promise of combining complementary research strategies. Mol Ecol 14, 3623–3642.PubMedCrossRefGoogle Scholar
  165. 165.
    Darland, T. & Dowling, J. E. (2001) Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci USA 98, 11691–11696.PubMedCrossRefGoogle Scholar
  166. 166.
    Lau, B., Bretaud, S., Huang, Y., Lin, E. & Guo, S. (2006) Dissociation of food and opiate preference by a genetic mutation in zebrafish. Genes Brain Behav 5, 497–505.PubMedCrossRefGoogle Scholar
  167. 167.
    Echevarria, D. J., Hammack, C. M., Pratt, D. W. & Hosemann, J. D. (2008) A novel behavioral test battery to assess global drug effects using the zebrafish. Int J Comp Psychol 21, 19–34.Google Scholar
  168. 168.
    Dlugos, C. A. & Rabin, R. A. (2003) Ethanol effects on three strains of zebrafish: model system for genetic investigations. Pharmacol Biochem Behav 74, 471–480.PubMedCrossRefGoogle Scholar
  169. 169.
    Gerlai, R., Ahmad, F. & Prajapati, S. (2008) Differences in acute alcohol-induced behavioral responses among zebrafish populations. Alcohol Clin Exp Res 32, 1763–1773.PubMedCrossRefGoogle Scholar
  170. 170.
    Gerlai, R., Chatterjee, D., Pereira, T., Sawashima, T. & Krishnannair, R. (2009) Acute and chronic alcohol dose: population differences in behavior and neurochemistry of zebrafish. Genes Brain Behav, DOI: 10.1111/j.1601-183X.2009.00488.x.Google Scholar
  171. 171.
    Tropepe, V. & Sive, H. L. (2003) Can zebrafish be used as a model to study the neurodevelopmental causes of autism? Genes Brain Behav 2, 268–281.PubMedCrossRefGoogle Scholar
  172. 172.
    Flint, J., Corley, J. C., DeFries, J. C., Fulker, D. W., Gray, J. A., Miller, S. & Collins, A. C. (1995) A simple genetic basis for a complex psychological trait in laboratory mice. Science 269, 1432–1435.PubMedCrossRefGoogle Scholar
  173. 173.
    Levin, E. D. & Chen, E. (2004) Nicotinic involvement in memory function in zebrafish. Neurotoxicol Teratol 26, 731–735.PubMedCrossRefGoogle Scholar
  174. 174.
    Swain, H. A., Sigstand, C. & Scalzo, F. M. (2004) Effects of dizocilpine (MK-801) on circling behaviour, swimming activity, and place preference in zebrafish (Danio rerio). Neurotoxicol Teratol 26, 725–729.PubMedCrossRefGoogle Scholar
  175. 175.
    Yu, L., Tucci, V., Kishi, S. & Zhdanova, I. V. (2006) Cognitive aging in zebrafish. PLoS 1, e14, doi: 10.1371/journal.pone.0000014.Google Scholar
  176. 176.
    Barth, K. A., Miklósi, A., Watkins, J., Bianco, I. H., Wilson, S. W. & Andrew, R. J. (2005) fsi zebrafish show concordant reversal of laterality of viscera, neuroanatomy, and a subset of behavioral responses. Curr Biol 15, 844–850.PubMedCrossRefGoogle Scholar
  177. 177.
    Larsen, M. G., Hansen, K. B., Henriksen, P. G. & Baatrup, E. (2008) Male zebrafish (Danio rerio) courtship behaviour resists the feminising effects of 17-ethinyloestradiol—morphological sexual characteristics do not. Aquat Toxicol 87, 234–244.PubMedCrossRefGoogle Scholar
  178. 178.
    Fabian, N. J., Albright, L. B., Gerlach, G., Fisher, H. S. & Rosenthal, G. (2007) Humic acid interferes with species recognition in zebrafish (Danio rerio). J Chem Ecol 33, 2090–2096.PubMedCrossRefGoogle Scholar
  179. 179.
    Magurran, A. E. (2005) Evolutionary Ecology: The Trinidadian Guppy. Oxford Series in Ecology & Evolution, Oxford, Oxford University Press.CrossRefGoogle Scholar
  180. 180.
    Ninkovic, J. & Bally-Cuif, L. (2006) The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods 39, 262–274.PubMedCrossRefGoogle Scholar
  181. 181.
    Loucks, E. & Carvan, M. J. (2004) Strain-dependent effects of developmental ethanol exposure in zebrafish. Neurotoxicol Teratol 26, 745–755.PubMedCrossRefGoogle Scholar
  182. 182.
    Coe, T. S., Hamilton, P. B., Griffiths, A. M., Hodgson, D. J., Wahab, M. A. & Tyler, C. R. (2009) Genetic variation in strains of zebrafish (Danio rerio) and the implications for ecotoxicology studies. Ecotoxicology 18, 144–150.PubMedCrossRefGoogle Scholar
  183. 183.
    Lawrence, C. (2007) The husbandry of zebrafish (Danio rerio): a review. Aquaculture 269, 1–20.CrossRefGoogle Scholar
  184. 184.
    Mullins, M. C., Hammerschmidt, M., Haffter, P. & Nüsslein-Volhard, C. (1994) Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol 4, 189–202.PubMedCrossRefGoogle Scholar
  185. 185.
    Westerfield, M. (1995) The Zebrafish Book; A Guide for the Laboratory Use of Zebrafish (Brachydanio rerio). Eugene, OR, University of Oregon Press.Google Scholar
  186. 186.
    Chapman, M. R. & Kramer, D. L. (1996) Guarded resources: the effect of intruder number on the tactics and success of defenders and intruders. Anim Behav 52, 83–94.CrossRefGoogle Scholar
  187. 187.
    Ramsay, J. M., Feist, G. W., Varga, Z. M., Westerfield, M., Kent, M. L. & Schreck, C. B. (2006) Whole-body cortisol is an indicator of crowding stress in adult zebrafish, Danio rerio. Aquaculture 258, 565–574.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Rowena Spence
    • 1
  1. 1.University of St AndrewsSt. Andrews FifeScotland

Personalised recommendations