Skip to main content

Pharmacology, Biodistribution, and Efficacy of GPCR-Based Pepducins in Disease Models

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 683))

Abstract

G protein-coupled receptors (GPCR) are a superfamily of receptors that are vital in a wide array of physiological processes. Modulation of GPCR signaling has been an intensive area of therapeutic study, mainly due to the diverse pathophysiological significance of GPCRs. Pepducins are cell-penetrating lipidated peptides designed to target the intracellular loops of the GPCR of interest. Pepducins can function as agonists or antagonists of their cognate receptor, making them highly useful compounds for the study of GPCR signaling. Pepducins have been used to control platelet-dependent hemostasis and thrombosis, tumor growth, invasion, and angiogenesis, as well as to improve sepsis outcomes in mice. Pepducins have been successfully designed against a wide variety of GPCRs including the protease-activated receptors (PAR1, 2, 4), the chemokine receptors (CXCR1, 2, 4), the sphingosine-1-phosphate receptor (S1P3), the adrenergic receptor (ADRA1B), and have the potential to help reveal the functions of intractable GPCRs. Pharmacokinetic, pharmacodynamic, and biodistribution studies have showed that pepducins are widely distributed throughout the body except the brain and possess appropriate drug-like properties for use in vivo. Here, we discuss the delivery, pharmacology, and biodistribution of pepducins, as well as the effects of pepducins in models of inflammation, cardiovascular disease, cancer, and angiogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., and Miyano, M. (2000) Crystal structure of rhodopsin: a G protein-coupled receptor, Science 289, 739–745.

    Article  CAS  PubMed  Google Scholar 

  2. Covic, L., Misra, M., Badar, J., Singh, C., and Kuliopulos, A. (2002) Pepducin-based intervention of thrombin-receptor signaling and systemic platelet activation, Nat Med 8, 1161–1165.

    Article  CAS  PubMed  Google Scholar 

  3. Kuliopulos, A., and Covic, L. (2003) Blocking receptors on the inside: pepducin-based intervention of PAR signaling and thrombosis, Life Sci 74, 255–262.

    Article  CAS  PubMed  Google Scholar 

  4. Covic, L., Gresser, A. L., Talavera, J., Swift, S., and Kuliopulos, A. (2002) Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides, Proc Natl Acad Sci USA 99, 643–648.

    Article  CAS  PubMed  Google Scholar 

  5. Keuren, J. F., Wielders, S. J., Ulrichts, H., Hackeng, T., Heemskerk, J. W., Deckmyn, H., Bevers, E. M., and Lindhout, T. (2005) Synergistic effect of thrombin on collagen-induced platelet procoagulant activity is mediated through protease-activated receptor-1, Arterioscler Thromb Vasc Biol 25, 1499–1505.

    Article  CAS  PubMed  Google Scholar 

  6. Leger, A. J., Jacques, S. L., Badar, J., Kaneider, N. C., Derian, C. K., Andrade-Gordon, P., Covic, L., and Kuliopulos, A. (2006) Blocking the protease-activated receptor 1–4 heterodimer in platelet-mediated thrombosis, Circulation 113, 1244–1254.

    Article  CAS  PubMed  Google Scholar 

  7. Trivedi, V., Boire, A., Tchernychev, B., Kaneider, N. C., Leger, A. J., O’Callaghan, K., Covic, L., and Kuliopulos, A. (2009) Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site, Cell 137, 332–343.

    Article  CAS  PubMed  Google Scholar 

  8. Majumdar, M., Tarui, T., Shi, B., Akakura, N., Ruf, W., and Takada, Y. (2004) Plasmin-induced migration requires signaling through protease-activated receptor 1 and integrin alpha(9)beta(1), J Biol Chem 279, 37528–37534.

    Article  CAS  PubMed  Google Scholar 

  9. Boire, A., Covic, L., Agarwal, A., Jacques, S., Sherifi, S., and Kuliopulos, A. (2005) PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells, Cell 120, 303–313.

    Article  CAS  PubMed  Google Scholar 

  10. Remsberg, J. R., Lou, H., Tarasov, S. G., Dean, M., and Tarasova, N. I. (2007) Structural analogues of smoothened intracellular loops as potent inhibitors of Hedgehog pathway and cancer cell growth, J Med Chem 50, 4534–4538.

    Article  CAS  PubMed  Google Scholar 

  11. Kaneider, N. C., Agarwal, A., Leger, A. J., and Kuliopulos, A. (2005) Reversing systemic inflammatory response syndrome with chemokine receptor pepducins, Nat Med 11, 661–665.

    Article  CAS  PubMed  Google Scholar 

  12. Kaneider, N. C., Leger, A. J., Agarwal, A., Nguyen, N., Perides, G., Derian, C., Covic, L., and Kuliopulos, A. (2007) ‘Role reversal’ for the receptor PAR1 in sepsis-induced vascular damage, Nat Immunol 8, 1303–1312.

    Article  CAS  PubMed  Google Scholar 

  13. Licht, T., Tsirulnikov, L., Reuveni, H., Yarnitzky, T., and Ben-Sasson, S. A. (2003) Induction of pro-angiogenic signaling by a synthetic peptide derived from the second intracellular loop of S1P3 (EDG3), Blood 102, 2099–2107.

    Article  CAS  PubMed  Google Scholar 

  14. Edwards, R. J., Moran, N., Devocelle, M., Kiernan, A., Meade, G., Signac, W., Foy, M., Park, S. D., Dunne, E., Kenny, D., and Shields, D. C. (2007) Bioinformatic discovery of novel bioactive peptides, Nat Chem Biol 3, 108–112.

    Article  CAS  PubMed  Google Scholar 

  15. Shpakov, A. O., Pertseva, M. N., Guryanov, I. A., and Vlasov, G. P. (2005) Influence of synthetic peptides derived from the third cytoplasmic loop of the type 1 relaxin receptor on the stimulation of G-protein GTP-binding activity by relaxin, Biol Membrany 22, 450–457.

    CAS  Google Scholar 

  16. Swift, S., Leger, A. J., Talavera, J., Zhang, L., Bohm, A., and Kuliopulos, A. (2006) Role of the PAR1 receptor 8th helix in signaling: the 7-8-1 receptor activation mechanism, J Biol Chem 281, 4109–4116.

    Article  CAS  PubMed  Google Scholar 

  17. Shpakov, A. O., Gur’yanov, I. A., Kuznetsova, L. A., Plesneva, S. A., Shpakova, E. A., Vlasov, G. P., and Pertseva, M. N. (2007) Studies of the molecular mechanisms of action of relaxin on the adenylyl cyclase signaling system using synthetic peptides derived from the LGR7 relaxin receptor, Neurosci Behav Physiol 37, 705–714.

    Article  CAS  PubMed  Google Scholar 

  18. Wielders, S. J., Bennaghmouch, A., Reutelingsperger, C. P., Bevers, E. M., and Lindhout, T. (2007) Anticoagulant and antithrombotic properties of intracellular protease-activated receptor antagonists, J Thromb Haemost 5, 571–576.

    Article  CAS  PubMed  Google Scholar 

  19. Covic, L., Tchernychev, B., Jacques, S., and Kuliopulos, A. (2007) Pharmacology and In Vivo Efficacy of Pepducins in Hemostasis and Arterial Thrombosis, in Handbook of Cell-Penetrating Peptides (Langel, U., Ed.), pp. 245–257, CRC Press, Boca Raton, FL.

    Google Scholar 

  20. Hollenberg, M. D., Saifeddine, M., Sandhu, S., Houle, S., and Vergnolle, N. (2004) Proteinase-activated receptor-4: evaluation of tethered ligand-derived peptides as probes for receptor function and as inflammatory agonists in vivo, Br J Pharmacol 143, 443–454.

    Article  CAS  PubMed  Google Scholar 

  21. Slofstra, S. H., Bijlsma, M. F., Groot, A. P., Reitsma, P. H., Lindhout, T., ten Cate, H., and Spek, C. A. (2007) Protease-activated receptor-4 inhibition protects from multiorgan failure in a murine model of systemic inflammation, Blood 110, 3176–3182.

    Article  CAS  PubMed  Google Scholar 

  22. Houle, S., Papez, M. D., Ferazzini, M., Hollenberg, M. D., and Vergnolle, N. (2005) Neutrophils and the kallikrein–kinin system in proteinase-activated receptor 4-mediated inflammation in rodents, Br J Pharmacol 146, 670–678.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, G., Kernan, K. A., Collins, S. J., Cai, X., Lopez-Guisa, J. M., Degen, J. L., Shvil, Y., and Eddy, A. A. (2007) Plasmin(ogen) promotes renal interstitial fibrosis by promoting epithelial-to-mesenchymal transition: role of plasmin-activated signals, J Am Soc Nephrol 18, 846–859.

    Article  CAS  PubMed  Google Scholar 

  24. Annahazi, A., Gecse, K., Dabek, M., Ait-Belgnaoui, A., Rosztoczy, A., Roka, R., Molnar, T., Theodorou, V., Wittmann, T., Bueno, L., and Eutamene, H. (2009) Fecal proteases from diarrheic-IBS and ulcerative colitis patients exert opposite effect on visceral sensitivity in mice, Pain 144, 209–217.

    Article  CAS  PubMed  Google Scholar 

  25. Dabek, M., Ferrier, L., Roka, R., Gecse, K., Annahazi, A., Moreau, J., Escourrou, J., Cartier, C., Chaumaz, G., Leveque, M., Ait-Belgnaoui, A., Wittmann, T., Theodorou, V., and Bueno, L. (2009) Luminal cathepsin g and protease-activated receptor 4: a duet involved in alterations of the colonic epithelial barrier in ulcerative colitis, Am J Pathol 175, 207–214.

    Article  CAS  PubMed  Google Scholar 

  26. McDougall, J. J., Zhang, C., Cellars, L., Joubert, E., Dixon, C. M., and Vergnolle, N. (2009) Triggering of proteinase-activated receptor 4 leads to joint pain and inflammation in mice, Arthritis Rheum 60, 728–737.

    Article  CAS  PubMed  Google Scholar 

  27. Hotchkiss, R. S., and Karl, I. E. (2003) The pathophysiology and treatment of sepsis, N Engl J Med 348, 138–150.

    Article  CAS  PubMed  Google Scholar 

  28. Riedemann, N. C., Guo, R. F., and Ward, P. A. (2003) Novel strategies for the treatment of sepsis, Nat Med 9, 517–524.

    Article  CAS  PubMed  Google Scholar 

  29. Sambrano, G. R., Weiss, E. J., Zheng, Y. W., Huang, W., and Coughlin, S. R. (2001) Role of thrombin signalling in platelets in haemostasis and thrombosis, Nature 413, 74–78.

    Article  CAS  PubMed  Google Scholar 

  30. Grenegard, M., Vretenbrant-Oberg, K., Nylander, M., Desilets, S., Lindstrom, E. G., Larsson, A., Ramstrom, I., Ramstrom, S., and Lindahl, T. L. (2008) The ATP-gated P2X1 receptor plays a pivotal role in activation of aspirin-treated platelets by thrombin and epinephrine, J Biol Chem 283, 18493–18504.

    Article  CAS  PubMed  Google Scholar 

  31. Leger, A. J., Covic, L., and Kuliopulos, A. (2006) Protease-activated receptors in cardiovascular diseases, Circulation 114, 1070–1077.

    Article  CAS  PubMed  Google Scholar 

  32. Seehaus, S., Shahzad, K., Kashif, M., Vinnikov, I. A., Schiller, M., Wang, H., Madhusudhan, T., Eckstein, V., Bierhaus, A., Bea, F., Blessing, E., Weiler, H., Frommhold, D., Nawroth, P. P., and Isermann, B. (2009) Hypercoagulability inhibits monocyte transendothelial migration through protease-activated receptor-1-, phospholipase-Cbeta-, phosphoinositide 3-kinase-, and nitric oxide-dependent signaling in monocytes and promotes plaque stability, Circulation 120, 774–784.

    Article  CAS  PubMed  Google Scholar 

  33. Kubo, S., Ishiki, T., Doe, I., Sekiguchi, F., Nishikawa, H., Kawai, K., Matsui, H., and Kawabata, A. (2006) Distinct activity of peptide mimetic intracellular ligands (pepducins) for proteinase-activated receptor-1 in multiple cells/tissues, Ann N Y Acad Sci 1091, 445–459.

    Article  CAS  PubMed  Google Scholar 

  34. Strande, J. L., Hsu, A., Su, J., Fu, X., Gross, G. J., and Baker, J. E. (2008) Inhibiting protease-activated receptor 4 limits myocardial ischemia/reperfusion injury in rat hearts by unmasking adenosine signaling, J Pharmacol Exp Ther 324, 1045–1054.

    Article  CAS  PubMed  Google Scholar 

  35. Dorsam, R. T., and Gutkind, J. S. (2007) G-protein-coupled receptors and cancer, Nat Rev Cancer 7, 79–94.

    Article  CAS  PubMed  Google Scholar 

  36. Even-Ram, S., Uziely, B., Cohen, P., Grisaru-Granovsky, S., Maoz, M., Ginzburg, Y., Reich, R., Vlodavsky, I., and Bar-Shavit, R. (1998) Thrombin receptor overexpression in malignant and physiological invasion processes, Nat Med 4, 909–914.

    Article  CAS  PubMed  Google Scholar 

  37. Henrikson, K. P., Jazin, E. E., Greenwood, J. A., and Dickerman, H. W. (1990) Prothrombin ­levels are increased in the estrogen-treated immature rat uterus, Endocrinology 126, 167–175.

    Article  CAS  PubMed  Google Scholar 

  38. Rudroff, C., Seibold, S., Kaufmann, R., Zetina, C. C., Reise, K., Schafer, U., Schneider, A., Brockmann, M., Scheele, J., and Neugebauer, E. A. (2002) Expression of the thrombin receptor PAR-1 correlates with tumour cell differentiation of pancreatic adenocarcinoma in vitro, Clin Exp Metastasis 19, 181–189.

    Article  CAS  PubMed  Google Scholar 

  39. Nierodzik, M. L., Chen, K., Takeshita, K., Li, J. J., Huang, Y. Q., Feng, X. S., D’Andrea, M. R., Andrade-Gordon, P., and Karpatkin, S. (1998) Protease-activated receptor 1 (PAR-1) is required and rate-limiting for thrombin-enhanced experimental pulmonary metastasis, Blood 92, 3694–3700.

    CAS  PubMed  Google Scholar 

  40. Even-Ram, S. C., Maoz, M., Pokroy, E., Reich, R., Katz, B. Z., Gutwein, P., Altevogt, P., and Bar-Shavit, R. (2001) Tumor cell invasion is promoted by activation of protease activated receptor-1 in cooperation with the alpha vbeta 5 integrin, J Biol Chem 276, 10952–10962.

    Article  CAS  PubMed  Google Scholar 

  41. Nierodzik, M. L., Kajumo, F., and Karpatkin, S. (1992) Effect of thrombin treatment of tumor cells on adhesion of tumor cells to platelets in vitro and tumor metastasis in vivo, Cancer Res 52, 3267–3272.

    CAS  PubMed  Google Scholar 

  42. Whitehead, I., Kirk, H., and Kay, R. (1995) Expression cloning of oncogenes by retroviral transfer of cDNA libraries, Mol Cell Biol 15, 704–710.

    CAS  PubMed  Google Scholar 

  43. Martin, C. B., Mahon, G. M., Klinger, M. B., Kay, R. J., Symons, M., Der, C. J., and Whitehead, I. P. (2001) The thrombin receptor, PAR-1, causes transformation by activation of Rho-mediated signaling pathways, Oncogene 20, 1953–1963.

    Article  CAS  PubMed  Google Scholar 

  44. Yang, E., Boire, A., Agarwal, A., Nguyen, N., O’Callaghan, K., Tu, P., Kuliopulos, A., and Covic, L. (2009) Blockade of PAR1 signaling with cell-penetrating pepducins inhibits Akt survival pathways in breast cancer cells and suppresses tumor survival and metastasis, Cancer Res 69, 6223–6231.

    Article  CAS  PubMed  Google Scholar 

  45. Agarwal, A., Covic, L., Sevigny, L. M., Kaneider, N. C., Lazarides, K., Azabdaftari, G., Sharifi, S., and Kuliopulos, A. (2008) Targeting a metalloprotease-PAR1 signaling system with cell-penetrating pepducins inhibits angiogenesis, ascites, and progression of ovarian cancer, Mol Cancer Ther 7, 2746–2757.

    Article  CAS  PubMed  Google Scholar 

  46. Kaufmann, R., Oettel, C., Horn, A., Halbhuber, K. J., Eitner, A., Krieg, R., Katenkamp, K., Henklein, P., Westermann, M., Bohmer, F. D., Ramachandran, R., Saifeddine, M., Hollenberg, M. D., and Settmacher, U. (2009) Met receptor tyrosine kinase transactivation is involved in proteinase-activated receptor-2-mediated hepatocellular carcinoma cell invasion, Carcinogenesis 30, 1487–1496.

    Article  CAS  PubMed  Google Scholar 

  47. Bailey, J. M., Mohr, A. M., and Hollingsworth, M. A. (2009) Sonic hedgehog paracrine signaling regulates metastasis and lymphangiogenesis in pancreatic cancer, Oncogene 28, 3513–3525.

    Article  CAS  PubMed  Google Scholar 

  48. Theunissen, J. W., and de Sauvage, F. J. (2009) Paracrine Hedgehog signaling in cancer, Cancer Res 69, 6007–6010.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH grants CA104406 (L. Covic) and CA122992, HL64701, and HL57905 (A. Kuliopulos).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tressel, S.L., Koukos, G., Tchernychev, B., Jacques, S.L., Covic, L., Kuliopulos, A. (2011). Pharmacology, Biodistribution, and Efficacy of GPCR-Based Pepducins in Disease Models. In: Langel, Ü. (eds) Cell-Penetrating Peptides. Methods in Molecular Biology, vol 683. Humana Press. https://doi.org/10.1007/978-1-60761-919-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-919-2_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-918-5

  • Online ISBN: 978-1-60761-919-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics