Skip to main content

Thermodynamics of Lipid Interactions with Cell-Penetrating Peptides

  • Protocol
  • First Online:
Cell-Penetrating Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 683))

Abstract

Cationic peptides are efficiently taken up by biological cells through different pathways, which can be exploited for delivery of intracellular drugs. For example, their endocytosis is known since 1967, and this typically produces entrapment of the peptides in endocytotic vesicles. The resulting peptide (and cargo) degradation in lysosomes is of little therapeutic interest. Beside endocytosis (and various subtypes thereof), cationic cell-penetrating peptides (CPPs) may also gain access to cytosol and nucleus of livings cells. This process is known since 1988, but it is poorly understood whether the cytosolic CPP appearance requires an active cellular machinery with membrane proteins and signaling molecules, or whether this translocation occurs by passive diffusion and thus can be mimicked with model membranes devoid of proteins or glycans. In the present chapter, protocols are presented that allow for testing the membrane binding and disturbance of CPPs on model membranes with special focus on particular CPP properties. Protocols include vesicle preparation, lipid quantification, and analysis of membrane leakage, lipid polymorphism (31P NMR), and membrane binding (isothermal titration calorimetry). Using these protocols, a major difference among CPPs is observed: At low micromolar concentration, nonamphipathic CPPs, such as nona-arginine (WR9) and penetratin, have only a poor affinity for model membranes with a lipid composition typical of eukaryotic membranes. No membrane leakage is induced by these compounds at low micromolar concentration. In contrast, their amphipathic derivatives, such as acylated WR9 (C14, C16, C18) or amphipathic penetratin mutant p2AL (Drin et al., Biochemistry 40:1824–1834, 2001), bind and disturb lipid model membranes already at low micromolar peptide concentration. This suggests that the mechanism for cytosolic CPP delivery (and potential toxicity) differs among CPPs despite their common name.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morad, N., Ryser, H.J. and Shen, W.C. (1984) Binding sites and endocytosis of heparin and polylysine are changed when the two molecules are given as a complex to Chinese hamster ovary cells. Biochim. Biophys. Acta. 801, 117–126.

    CAS  PubMed  Google Scholar 

  2. Ryser, H.J. (1967) A membrane effect of basic polymers dependent on molecular size. Nature 215, 934–936.

    Article  CAS  PubMed  Google Scholar 

  3. Kaplan, I.M., Wadia, J.S. and Dowdy, S.F. (2005) Cationic TAT peptide transduction domain enters cells by macropinocytosis. J. Control. Release 102, 247–253.

    Article  CAS  PubMed  Google Scholar 

  4. Belting, M., Mani, K., Jonsson, M., Cheng, F., Sandgren, S., Jonsson, S., Ding, K., Delcros, J.G. and Fransson, L.A. (2003) Glypican-1 is a vehicle for polyamine uptake in mammalian cells: a pivital role for nitrosothiol-derived nitric oxide. J. Biol. Chem. 278, 47181–47189.

    Article  CAS  PubMed  Google Scholar 

  5. Lundberg, M., Wikstrom, S. and Johansson, M. (2003) Cell surface adherence and endocytosis of protein transduction domains. Mol. Ther. 8, 143–150.

    Article  CAS  PubMed  Google Scholar 

  6. Kopatz, I., Remy, J.S. and Behr, J.P. (2004) A model for non-viral gene delivery: through syndecan adhesion molecules and powered by actin. J Gene Med 6, 769–776.

    Article  CAS  PubMed  Google Scholar 

  7. Zenke, M., Steinlein, P., Wagner, E., Cotten, M., Beug, H. and Birnstiel, M.L. (1990) Receptor-mediated endocytosis of transferrin-polycation conjugates: an efficient way to introduce DNA into hematopoietic cells. Proc. Natl. Acad. Sci. USA 87, 3655–3659.

    Article  CAS  PubMed  Google Scholar 

  8. Frankel, A.D. and Pabo, C.O. (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55, 1189–1193.

    Article  CAS  PubMed  Google Scholar 

  9. Green, M. and Loewenstein, P.M. (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55, 1179–1188.

    Article  CAS  PubMed  Google Scholar 

  10. Marinova, Z., Vukojevic, V., Surcheva, S., Yakovleva, T., Cebers, G., Pasikova, N., Usynin, I., Hugonin, L., Fang, W., Hallberg, M., Hirschberg, D., Bergman, T., Langel, Ü., Häuser, K.F., Pramanik, A., Aldrich, J.V., Gräslund, A., Terenius, L. and Bakalkin, G. (2005) Translocation of dynorphin neuropeptides across the plasma membrane. A putative mechanism of signal transmission. J. Biol. Chem. 280, 26360–26370.

    Article  CAS  PubMed  Google Scholar 

  11. Wadia, J.S., Stan, R.V. and Dowdy, S.F. (2004) Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med. 10, 310–315.

    Article  CAS  PubMed  Google Scholar 

  12. Fretz, M.M., Penning, N.A., Al-Taei, S., Futaki, S., Takeuchi, T., Nakase, I., Storm, G. and Jones, A.T. (2007) Temperature-, concentration- and cholesterol-dependent translocation of L- and D-octa-arginine across the plasma and nuclear membrane of CD34+ leukaemia cells. Biochem. J. 403, 335–342.

    Article  CAS  PubMed  Google Scholar 

  13. Zaro, J.L., Rajapaksa, T.E., Okamoto, C.T. and Shen, W.C. (2006) Membrane transduction of oligoarginine in HeLa cells is not mediated by macropinocytosis. Mol. Pharm. 3, 181–186.

    Article  CAS  PubMed  Google Scholar 

  14. Vives, E., Brodin, P. and Lebleu, B. (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010–16017.

    Article  CAS  PubMed  Google Scholar 

  15. Mitchell, D.J., Kim, D.T., Steinman, L., Fathman, C.G. and Rothbard, J.B. (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J. Pept. Res. 56, 318–325.

    Article  CAS  PubMed  Google Scholar 

  16. Thoren, P.E., Persson, D., Isakson, P., Goksor, M., Onfelt, A. and Norden, B. (2003) Uptake of analogs of penetratin, Tat(48–60) and oligoarginine in live cells. Biochem. Biophys. Res. Commun. 307, 100–107.

    Article  CAS  PubMed  Google Scholar 

  17. Mano, M., Henriques, A., Paiva, A., Prieto, M., Gavilanes, F., Simoes, S. and Pedroso de Lima, M.C. (2006) Cellular uptake of S413-PV peptide occurs upon conformational changes induced by peptide-membrane interactions. Biochim. Biophys. Acta 1758, 336–346.

    Article  CAS  PubMed  Google Scholar 

  18. Tunnemann, G., Ter-Avetisyan, G., Martin, R.M., Stockl, M., Herrmann, A. and Cardoso, M.C. (2008) Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J. Pept. Sci. 14, 469–476.

    Article  PubMed  CAS  Google Scholar 

  19. Ter-Avetisyan, G., Tunnemann, G., Nowak, D., Nitschke, M., Herrmann, A., Drab, M. and Cardoso, M.C. (2009) Cell entry of arginine-rich peptides is independent of endocytosis. J. Biol. Chem. 284, 3370–3378.

    Article  CAS  PubMed  Google Scholar 

  20. Fischer, R., Fotin-Mleczek, M., Hufnagel, H. and Brock, R. (2005) Break on through to the other side-biophysics and cell biology shed light on cell-penetrating peptides. Chembiochem. 6, 2126–2142.

    Article  CAS  PubMed  Google Scholar 

  21. Ziegler, A., Nervi, P., Durrenberger, M. and Seelig, J. (2005) The cationic cell-penetrating peptide CPP(TAT) derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence. Biochemistry 44, 138–148.

    Article  CAS  PubMed  Google Scholar 

  22. Geueke, B., Namoto, K., Agarkova, I., Perriard, J.C., Kohler, H.P. and Seebach, D. (2005) Bacterial cell penetration by beta3-oligohomoarginines: indications for passive transfer through the lipid bilayer. Chembiochem. 6, 982–985.

    Article  CAS  PubMed  Google Scholar 

  23. Nekhotiaeva, N., Elmquist, A., Rajarao, G.K., Hällbrink, M., Langel, Ü. and Good, L. (2004) Cell entry and antimicrobial properties of eukaryotic cell-penetrating peptides. FASEB J. 18, 394–396.

    CAS  PubMed  Google Scholar 

  24. Holm, T., Netzereab, S., Hansen, M., Langel, Ü. and Hällbrink, M. (2005) Uptake of cell-penetrating peptides in yeasts. FEBS Lett. 579, 5217–5222.

    Article  CAS  PubMed  Google Scholar 

  25. Glaeser, R.M. and Jap, B.K. (1984) The “Born Energy” Problem in Bacte riorhodopsin. Biophys. J. 45, 95–97.

    Article  CAS  PubMed  Google Scholar 

  26. Nishihara, M., Perret, F., Takeuchi, T., Futaki, S., Lazar, A.N., Coleman, A.W., Sakai, N. and Matile, S. (2005) Arginine magic with new counterions up the sleeve. Org. Biomol. Chem. 3, 1659–1669.

    Article  CAS  PubMed  Google Scholar 

  27. Richard, J.P., Melikov, K., Vives, E., Ramos, C., Verbeure, B., Gait, M.J., Chernomordik, L.V. and Lebleu, B. (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278, 585–590.

    Article  CAS  PubMed  Google Scholar 

  28. Ziegler, A. (2008) Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. Adv. Drug Deliv. Rev. 60, 580–597.

    Article  CAS  PubMed  Google Scholar 

  29. Scheller, A., Oehlke, J., Wiesner, B., Dathe, M., Krause, E., Beyermann, M., Melzig, M. and Bienert, M. (1999) Structural requirements for cellular uptake of alpha-helical amphipathic peptides. J. Pept. Sci. 5, 185–194.

    Article  CAS  PubMed  Google Scholar 

  30. Bechinger, B. and Lohner, K. (2006) Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim. Biophys. Acta 1758, 1529–1539.

    Article  CAS  PubMed  Google Scholar 

  31. Takeshima, K., Chikushi, A., Lee, K.K., Yonehara, S. and Matsuzaki, K. (2003) Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes. J. Biol. Chem. 278, 1310–1315.

    Article  CAS  PubMed  Google Scholar 

  32. Shai, Y. (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta 1462, 55–70.

    Article  CAS  PubMed  Google Scholar 

  33. Deshayes, S., Plenat, T., Aldrian-Herrada, G., Divita, G., Le Grimellec, C. and Heitz, F. (2004) Primary amphipathic cell-penetrating peptides: structural requirements and interactions with model membranes. Biochemistry 43, 7698–7706.

    Article  CAS  PubMed  Google Scholar 

  34. Cho, Y.W., Kim, J.D. and Park, K. (2003) Polycation gene delivery systems: escape from endosomes to cytosol. J. Pharm. Pharmacol. 55, 721–734.

    Article  CAS  PubMed  Google Scholar 

  35. Subbarao, N.K., Parente, R.A., Szoka, F.C., Jr., Nadasdi, L. and Pongracz, K. (1987) pH-dependent bilayer destabilization by an amphipathic peptide. Biochemistry 26, 2964–2972.

    Article  CAS  PubMed  Google Scholar 

  36. Jones, S.W., Christison, R., Bundell, K., Voyce, C.J., Brockbank, S.M., Newham, P. and Lindsay, M.A. (2005) Characterisation of cell-penetrating peptide-mediated peptide delivery. Br. J. Pharmacol. 145, 1093–1102.

    Article  CAS  PubMed  Google Scholar 

  37. Saar, K., Lindgren, M., Hansen, M., Eiriksdottir, E., Jiang, Y., Rosenthal-Aizman, K., Sassian, M. and Langel, Ü. (2005) Cell-penetrating peptides: a comparative membrane toxicity study. Anal. Biochem. 345, 55–65.

    Article  CAS  PubMed  Google Scholar 

  38. Macdonald, P.M., Crowell, K.J., Franzin, C.M., Mitrakos, P. and Semchyschyn, D.J. (1998) Polyelectrolyte-induced domains in lipid bilayer membranes: the deuterium NMR perspective. Biochem. Cell. Biol. 76, 452–464.

    Article  CAS  PubMed  Google Scholar 

  39. Tiriveedhi, V. and Butko, P. (2007) A fluorescence spectroscopy study on the interactions of the TAT-PTD peptide with model lipid membranes. Biochemistry 46, 3888–3895.

    Article  CAS  PubMed  Google Scholar 

  40. Roux, M., Neumann, J.M., Bloom, M. and Devaux, P.F. (1988) 2H and 31P NMR study of pentalysine interaction with headgroup deuterated phosphatidylcholine and phosphatidylserine. Eur. Biophys. J. 16, 267–273.

    Article  CAS  PubMed  Google Scholar 

  41. Esbjorner, E.K., Lincoln, P. and Norden, B. (2007) Counterion-mediated membrane penetration: Cationic cell-penetrating peptides overcome Born energy barrier by ion-pairing with phospholipids. Biochim. Biophys. Acta 1768, 1550–1558.

    Article  PubMed  CAS  Google Scholar 

  42. Sakai, N., Takeuchi, T., Futaki, S. and Matile, S. (2005) Direct observation of anion-mediated translocation of fluorescent oligoarginine carriers into and across bulk liquid and anionic bilayer membranes. Chembiochem. 6, 114–122.

    Article  CAS  PubMed  Google Scholar 

  43. Henriques, S.T., Costa, J. and Castanho, M.A. (2005) Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human HeLa cells is driven by membrane electrostatic potential. Biochemistry 44, 10189–10198.

    Article  PubMed  CAS  Google Scholar 

  44. Afonin, S., Frey, A., Bayerl, S., Fischer, D., Wadhwani, P., Weinkauf, S. and Ulrich, A.S. (2006) The cell-penetrating peptide TAT(48–60) induces a non-lamellar phase in DMPC membranes. Chemphyschem. 7, 2134–2142.

    Article  CAS  PubMed  Google Scholar 

  45. Thoren, P.E., Persson, D., Karlsson, M. and Norden, B. (2000) The antennapedia peptide penetratin translocates across lipid bilayers – the first direct observation. FEBS Lett. 482, 265–268.

    Article  CAS  PubMed  Google Scholar 

  46. Thoren, P.E., Persson, D., Esbjorner, E.K., Goksor, M., Lincoln, P. and Norden, B. (2004) Membrane binding and translocation of cell-penetrating peptides. Biochemistry 43, 3471–3489.

    Article  CAS  PubMed  Google Scholar 

  47. Futaki, S., Ohashi, W., Suzuki, T., Niwa, M., Tanaka, S., Ueda, K., Harashima, H. and Sugiura, Y. (2001) Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjug. Chem. 12, 1005–1011.

    Article  CAS  PubMed  Google Scholar 

  48. Drin, G., Demene, H., Temsamani, J. and Brasseur, R. (2001) Translocation of the pAntp peptide and its amphipathic analogue AP-2AL. Biochemistry 40, 1824–1834.

    Article  CAS  PubMed  Google Scholar 

  49. Schindler, H. (1979) Exchange and interactions between lipid layers at the surface of a liposome solution. Biochim. Biophys. Acta 555, 316–336.

    Article  CAS  PubMed  Google Scholar 

  50. Qiu, R. and MacDonald, R.C. (1994) A metastable state of high surface activity produced by sonication of phospholipids. Biochim. Biophys. Acta. 1191, 343–353.

    Article  CAS  PubMed  Google Scholar 

  51. Smith, R. and Tanford, C. (1972) Critical micelle concentration of L-alpha-dipalmi toylphosphatidylcholine in water and water/methanol solutions. J. Mol. Biol. 67, 75–83.

    Article  CAS  PubMed  Google Scholar 

  52. Altenbach, C. and Seelig, J. (1984) Ca-2+ Binding to phosphatidylcholine bilayers as studied by deuterium magnetic-resonance – evidence for the formation of a Ca-2+ complex with 2 phospholipid molecules. Biochemistry 23, 3913–3920.

    Article  CAS  PubMed  Google Scholar 

  53. Lewis, B.A. and Engelman, D.M. (1983) Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol. 166, 211–217.

    Article  CAS  PubMed  Google Scholar 

  54. Santaren, J.F., Rico, M., Guilleme, J. and Ribera, A. (1982) Thermal and 13C-NMR study of the dynamic structure of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine and 1-oleyl-2-palmitoyl-sn-glycero-3-phosphocholine in aqueous dispersions. Biochim. Biophys. Acta 687, 231–237.

    Article  CAS  PubMed  Google Scholar 

  55. Cullis, P.R., Hope, M.J. and Tilcock, C.P. (1986) Lipid polymorphism and the roles of lipids in membranes. Chem. Phys. Lipids 40, 127–144.

    Article  CAS  PubMed  Google Scholar 

  56. Langner, M. and Hui, S.W. (1993) Dithio nite penetration through phospholipid bilayers as a measure of defects in lipid molecular packing. Chem. Phys. Lipids 65, 23–30.

    Article  CAS  PubMed  Google Scholar 

  57. Fabrie, C.H., de Kruijff, B. and de Gier, J. (1990) Protection by sugars against phase transition-induced leak in hydrated dimyristoylphosphatidylcholine liposomes. Biochim. Biophys. Acta 1024, 380–384.

    Article  CAS  PubMed  Google Scholar 

  58. Volodkin, D., Mohwald, H., Voegel, J.C. and Ball, V. (2007) Coating of negatively charged liposomes by polylysine: drug release study. J. Control. Release 117, 111–120.

    Article  CAS  PubMed  Google Scholar 

  59. Marsh, D. (1996) Intrinsic curvature in normal and inverted lipid structures and in membranes. Biophys. J. 70, 2248–2255.

    Article  CAS  PubMed  Google Scholar 

  60. Felgner, J.H., Kumar, R., Sridhar, C.N., Wheeler, C.J., Tsai, Y.J., Border, R., Ramsey, P., Martin, M. and Felgner, P.L. (1994) Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J. Biol. Chem. 269, 2550–2561.

    CAS  PubMed  Google Scholar 

  61. Prochiantz, A. (1996) Getting hydrophilic compounds into cells: lessons from homeopeptides. Curr. Opin. Neurobiol. 6, 629–634.

    Article  CAS  PubMed  Google Scholar 

  62. Szoka, F. and Papahadjopoulos, D. (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu. Rev. Biophys. Biol. 9, 467–508.

    Article  CAS  Google Scholar 

  63. Fischer, A., Oberholzer, T. and Luisi, P.L. (2000) Giant vesicles as models to study the interactions between membranes and proteins. Biochim. Biophys. Acta 1467, 177–188.

    Article  CAS  PubMed  Google Scholar 

  64. Elorza, B., Elorza, M.A., Sainz, M.C. and Chantres, J.R. (1993) Analysis of the particle size distribution and internal volume of liposomal preparations. J. Pharm. Sci. 82, 1160–1163.

    Article  CAS  PubMed  Google Scholar 

  65. Seelig, A. (1987) Local anesthetics and pressure: a comparison of dibucaine binding to lipid monolayers and bilayers. Biochim. Biophys. Acta 899, 196–204.

    Article  CAS  PubMed  Google Scholar 

  66. Herbig, M.E., Fromm, U., Leuenberger, J., Krauss, U., Beck-Sickinger, A.G. and Merkle, H.P. (2005) Bilayer interaction and localization of cell penetrating peptides with model membranes: a comparative study of a human calcitonin (hCT)-derived peptide with pVEC and pAntp(43–58). Biochim. Biophys. Acta 1712, 197–211.

    Article  CAS  PubMed  Google Scholar 

  67. Michaelson, D.M., Horwitz, A.F. and Klein, M.P. (1973) Transbilayer asymmetry and surface homogeneity of mixed phospholipids in cosonicated vesicles. Biochemistry 12, 2637–2645.

    Article  CAS  PubMed  Google Scholar 

  68. Wieprecht, T., Apostolov, O., Beyermann, M. and Seelig, J. (2000) Membrane binding and pore formation of the antibacterial peptide PGLa: thermodynamic and mechanistic aspects. Biochemistry 39, 442–452.

    Article  CAS  PubMed  Google Scholar 

  69. Ruocco, M.J. and Shipley, G.G. (1982) Characterization of the sub-transition of hydrated dipalmitoylphosphatidylcholine bilayers – kinetic, hydration and structural study. Biochim. Biophys. Acta 691, 309–320.

    Article  CAS  Google Scholar 

  70. Zhou, Z., Sayer, B.G., Hughes, D.W., Stark, R.E. and Epand, R.M. (1999) Studies of phospholipid hydration by high-resolution magic-angle spinning nuclear magnetic resonance. Biophys. J. 76, 387–399.

    Article  CAS  PubMed  Google Scholar 

  71. Newman, G.C. and Huang, C. (1975) Structural studies on phophatidylcholine-cholesterol mixed vesicles. Biochemistry 14, 3363–3370.

    Article  CAS  PubMed  Google Scholar 

  72. Bangham, A.D., Standish, M.M. and Watkins, J.C. (1965) Diffusion of univalent ions across lamellae of swollen phospholipids. J. Mol. Biol. 13, 238–252.

    Article  CAS  PubMed  Google Scholar 

  73. Huang, C. (1969) Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry 8, 344–352.

    Article  CAS  PubMed  Google Scholar 

  74. Hope, M.J., Bally, M.B., Webb, G. and Cullis, P.R. (1985) Production of large unilamellar vesicles by a rapid extrusion procedure – characterization of size distribution, trapped volume and ability to maintain a membrane-potential. Biochim. Biophys. Acta 812, 55–65.

    Article  CAS  Google Scholar 

  75. Kaasgaard, T., Mouritsen, O.G. and Jorgensen, K. (2003) Freeze/thaw effects on lipid-bilayer vesicles investigated by differential scanning calorimetry. Biochim. Biophys. Acta. 1615, 77–83.

    Article  CAS  PubMed  Google Scholar 

  76. Traikia, M., Warschawski, D.E., Recouvreur, M., Cartaud, J. and Devaux, P.F. (2000) Formation of unilamellar vesicles by repe titive freeze-thaw cycles: characterization by electron microscopy and 31P-nuclear magnetic resonance. Eur. Biophys. J. 29, 184–195.

    Article  CAS  PubMed  Google Scholar 

  77. Larrabee, A.L. (1979) Time-dependent changes in the size distribution of distearoyl phosphatidylcholine vesicles. Biochemistry 18, 3321–3326.

    Article  CAS  PubMed  Google Scholar 

  78. Suurkuusk, J., Lentz, B.R., Barenholz, Y., Biltonen, R.L. and Thompson, T.E. (1976) Calorimetric and fluorescent-probe study of gel-liquid crystalline phase-transition in small, single-lamellar dipalmitoylphosphatidylcholine vesicles. Biochemistry 15, 1393–1401.

    Article  CAS  PubMed  Google Scholar 

  79. Mayer, L.D., Hope, M.J. and Cullis, P.R. (1986) Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim. Biophys. Acta 858, 161–168.

    Article  CAS  PubMed  Google Scholar 

  80. Grit, M. and Crommelin, D.J.A. (1992) The effect of aging on the physical stability of liposome dispersions. Chem. Phys. Lipids 62, 113–122.

    Article  CAS  PubMed  Google Scholar 

  81. Lasic, D.D. (1988) The mechanism of vesicle formation. Biochem. J. 256, 1–11.

    CAS  PubMed  Google Scholar 

  82. Petersen, N.O. and Chan, S.I. (1978) Effects of thermal prephase transition and salts on coagulation and flocculation of phosphatidylcholine bilayer vesicles. Biochim. Biophys. Acta 509, 111–128.

    Article  CAS  PubMed  Google Scholar 

  83. Lichtenberg, D., Freire, E., Schmidt, C.F., Barenholz, Y., Felgner, P.L. and Thompson, T.E. (1981) Effect of surface curvature on stability, thermodynamic behavior, and osmotic activity of dipalmitoylphosphatidylcholine single lamellar vesicles. Biochemistry 20, 3462–3467.

    Article  CAS  PubMed  Google Scholar 

  84. Winterhalter, M. and Lasic, D.D. (1993) Liposome stability and formation – experimental parameters and theories on the size distribution. Chem. Phys. Lipids 64, 35–43.

    Article  CAS  PubMed  Google Scholar 

  85. Maulucci, G., De Spirito, M., Arcovito, G., Boffi, F., Castellano, A.C. and Briganti, G. (2005) Particle size distribution in DMPC vesicles solutions undergoing different sonication times. Biophys. J. 88, 3545–3550.

    Article  CAS  PubMed  Google Scholar 

  86. Pereira-Lachataignerais, J., Pons, R., Panizza, P., Courbin, L., Rouch, J. and Lopez, O. (2006) Study and formation of vesicle systems with low polydispersity index by ultrasound method. Chem. Phys. Lipids 140, 88–97.

    Article  CAS  PubMed  Google Scholar 

  87. Hauser, H.O. (1971) Effect of ultrasonic irradiation on chemical structure of egg lecithin. Biochem. Bioph. Res. Commun. 45, 1049–1055.

    Article  CAS  Google Scholar 

  88. Woodbury, D.J., Richardson, E.S., Grigg, A.W., Welling, R.D. and Knudson, B.H. (2006) Reducing liposome size with ultrasound: bimodal size distributions. J. Liposome Res. 16, 57–80.

    Article  CAS  PubMed  Google Scholar 

  89. Frimer, A.A., Strul, G., Buch, J. and Gottlieb, H.E. (1996) Can superoxide organic chemistry be observed within the liposomal bilayer? Free Radic. Biol. Med. 20, 843–852.

    Article  CAS  PubMed  Google Scholar 

  90. Andrews, S.B., Hoffman, R.M. and Borison, A. (1975) Variations of size and distribution in suspensions of sonicated phospholipid bilayers. Biochem. Biophys. Res. Commun. 65, 913–920.

    Article  CAS  PubMed  Google Scholar 

  91. Yamaguchi, T., Nomura, M., Matsuoka, T. and Koda, S. (2009) Effects of frequency and power of ultrasound on the size reduction of liposome. Chem. Phys. Lipids 160, 58–62.

    Article  CAS  PubMed  Google Scholar 

  92. Martin, F.J. and MacDonald, R.C. (1976) Phospholipid exchange between bilayer membrane vesicles. Biochemistry 15, 321–327.

    Article  CAS  PubMed  Google Scholar 

  93. McCulloch, A. (2003) Chloroform in the environment: occurrence, sources, sinks and effects. Chemosphere 50, 1291–1308.

    Article  CAS  PubMed  Google Scholar 

  94. Constan, A.A., Wong, B.A., Everitt, J.I. and Butterworth, B.E. (2002) Chloroform inhalation exposure conditions necessary to initiate liver toxicity in female B6C3F1 mice. Toxicol. Sci. 66, 201–208.

    Article  CAS  PubMed  Google Scholar 

  95. Blixt, Y., Valeur, A. and Everitt, E. (1990) Cultivation of HeLa cells with fetal bovine serum or Ultroser G: effects on the plasma membrane constitution. In Vitro Cell Dev. Biol. 26, 691–700.

    Article  CAS  PubMed  Google Scholar 

  96. White, D.A. (1973) Phospholipid composition of mammalian tissue. In: Ansell, G.B., Hawthorne, J.A., and Dawson, R.M.C. (editors), 2nd ed., Form and function of phospholipids, Elsevier, Amsterdam, pp. 441–482.

    Google Scholar 

  97. Epand, R.M. and Epand, R.F. (2009) Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim. Biophys. Acta 1788, 289–294.

    Article  CAS  PubMed  Google Scholar 

  98. Beining, P.R., Huff, E., Prescott, B. and Theodore, T.S. (1975) Characterization of the lipids of mesosomal vesicles and plasma membranes from Staphylococcus aureus. J. Bacteriol. 121, 137–143.

    CAS  PubMed  Google Scholar 

  99. Devaux, P.F. (1991) Static and dynamic lipid asymmetry in cell membranes. Biochemistry 30, 1163–1173.

    Article  CAS  PubMed  Google Scholar 

  100. Martin, S.J., Reutelingsperger, C.P., McGahon, A.J., Rader, J.A., van Schie, R.C., LaFace, D.M. and Green, D.R. (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182, 1545–1556.

    Article  CAS  PubMed  Google Scholar 

  101. Ziegler, A., Blatter, X.L., Seelig, A. and Seelig, J. (2003) Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Biochemistry 42, 9185–9194.

    Article  CAS  PubMed  Google Scholar 

  102. Persson, D., Thoren, P.E., Lincoln, P. and Norden, B. (2004) Vesicle membrane interactions of penetratin analogues. Biochemistry 43, 11045–11055.

    Article  CAS  PubMed  Google Scholar 

  103. Hristova, K. and Needham, D. (1994) The influence of polymer-grafted lipids on the physical-properties of lipid bilayers – a theoretical-study. J. Colloid Interface Sci. 168, 302–314.

    Article  CAS  Google Scholar 

  104. Tirosh, O., Barenholz, Y., Katzhendler, J. and Priev, A. (1998) Hydration of polyethylene glycol-grafted liposomes. Biophys. J. 74, 1371–1379.

    Article  CAS  PubMed  Google Scholar 

  105. Garbuzenko, O., Barenholz, Y. and Priev, A. (2005) Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chem. Phys. Lipids 135, 117–129.

    Article  CAS  PubMed  Google Scholar 

  106. Allende, D., Simon, S.A. and McIntosh, T.J. (2005) Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. Biophys. J. 88, 1828–1837.

    Article  CAS  PubMed  Google Scholar 

  107. Kaasgaard, T., Mouritsen, O.G. and Jorgensen, K. (2001) Screening effect of PEG on avidin binding to liposome surface receptors. Int. J. Pharm. 214, 63–65.

    Article  CAS  PubMed  Google Scholar 

  108. Itaya, K. and Ui, M. (1966) A new micromethod for the colorimetric determination of inorganic phosphate. Clin. Chim. Acta 14, 361–366.

    Article  CAS  PubMed  Google Scholar 

  109. Baykov, A.A., Evtushenko, O.A. and Avaeva, S.M. (1988) A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal. Biochem. 171, 266–270.

    Article  CAS  PubMed  Google Scholar 

  110. Vemuri, S. (2005) Comparison of assays for determination of peptide content for lyophi lized thymalfasin. J. Pept. Res. 65, 433–439.

    Article  CAS  PubMed  Google Scholar 

  111. Edelhoch, H. (1967) Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948–1954.

    Article  CAS  PubMed  Google Scholar 

  112. Ziegler, A. and Seelig, J. (2008) Binding and clustering of glycosaminoglycans: a common property of mono- and multivalent cell-penetrating compounds. Biophys. J. 94, 2142–2149.

    Article  CAS  PubMed  Google Scholar 

  113. Schiffer, M. and Edmundson, A.B. (1967) Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophys. J. 7, 121–135.

    Article  CAS  PubMed  Google Scholar 

  114. Iritani, N. and Miyahara, T. (1973) Deter mination of dissociation-constants of calcein by potentiometric method. Jpn. Anal. 22, 174–178.

    CAS  Google Scholar 

  115. Wallach, D.F.H., Surgenor, D.M., Soderberg, J. and Delano, E. (1959) Preparation and properties of 3, 6-dihydroxy-2, 4-bis-(N, N′-di-(carboxymethyl)-aminomethyl) fluoran – utilization for the ultramicrodetermination of calcium. Anal. Chem. 31, 456–460.

    Article  CAS  Google Scholar 

  116. Niesman, M.R., Khoobehi, B. and Peyman, G.A. (1992) Encapsulation of sodium fluorescein for dye release studies. Invest. Ophthalmol. Vis. Sci. 33, 2113–2119.

    CAS  PubMed  Google Scholar 

  117. Garcia, M.A., Paje, S.E., Villegas, M.A. and Llopis, J. (2002) Preparation and characterisation of calcein-doped thin coatings. Appl. Phys. A Mater. 74, 83–88.

    Article  CAS  Google Scholar 

  118. Aschi, M., D’Archivio, A.A., Fontana, A. and Formiglio, A. (2008) Physicochemical properties of fluorescent probes: experimental and computational determination of the overlapping pKa values of carboxyfluorescein. J. Org. Chem. 73, 3411–3417.

    Article  CAS  PubMed  Google Scholar 

  119. Rothbard, J.B., Jessop, T.C., Lewis, R.S., Murray, B.A. and Wender, P.A. (2004) Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. J. Am. Chem. Soc. 126, 9506–9507.

    Article  CAS  PubMed  Google Scholar 

  120. Chen, R.F. and Knutson, J.R. (1988) Mechanism of fluorescence concentration quenching of carboxyfluorescein in liposomes: energy transfer to nonfluorescent dimers. Anal. Biochem. 172, 61–77.

    Article  CAS  PubMed  Google Scholar 

  121. Gavino, V.C., Miller, J.S., Dillman, J.M., Milo, G.E. and Cornwell, D.G. (1981) Polyunsaturated fatty acid accumulation in the lipids of cultured fibroblasts and smooth muscle cells. J. Lipid Res. 22, 57–62.

    CAS  PubMed  Google Scholar 

  122. Seelig, J. (1978) P-31 Nuclear magnetic-resonance and head group structure of phospholipids in membranes. Biochim. Biophys. Acta 515, 105–140.

    CAS  PubMed  Google Scholar 

  123. Soubias, O. and Gawrisch, K. (2007) Nuclear magnetic resonance investigation of oriented lipid membranes. Methods Mol. Biol. 400, 77–88.

    Google Scholar 

  124. Seelig, J. (2004) Thermodynamics of lipid-peptide interactions. Biochim. Biophys. Acta. 1666, 40–50.

    CAS  PubMed  Google Scholar 

  125. Persson, D., Thoren, P.E., Herner, M., Lincoln, P. and Norden, B. (2003) Appli cation of a novel analysis to measure the binding of the membrane-translocating peptide penetratin to negatively charged liposomes. Biochemistry 42, 421–429.

    Article  CAS  PubMed  Google Scholar 

  126. Beschiaschvili, G. and Seelig, J. (1990) Peptide binding to lipid bilayers. Binding isotherms and zeta-potential of a cyclic somatostatin analogue. Biochemistry 29, 10995–11000.

    Article  CAS  PubMed  Google Scholar 

  127. Franzin, C.M. and Macdonald, P.M. (2001) Polylysine-induced 2H NMR-observable domains in phosphatidylserine/phosphatidylcholine lipid bilayers. Biophys. J. 81, 3346–3362.

    Article  CAS  PubMed  Google Scholar 

  128. Macdonald, P.M., Crowell, K.J., Franzin, C.M., Mitrakos, P. and Semchyschyn, D. (2000) 2H NMR and polyelectrolyte-induced domains in lipid bilayers. Solid State Nucl. Magn. Reson. 16, 21–36.

    Article  CAS  PubMed  Google Scholar 

  129. Dennison, S.R., Baker, R.D., Nicholl, I.D. and Phoenix, D.A. (2007) Interactions of cell penetrating peptide Tat with model membranes: a biophysical study. Biochem. Biophys. Res. Commun. 363, 178–182.

    Article  CAS  PubMed  Google Scholar 

  130. Baker, B.M. and Murphy, K.P. (1996) Evalua tion of linked protonation effects in protein binding reactions using iso thermal titration calorimetry. Biophys. J. 71, 2049–2055.

    Article  CAS  PubMed  Google Scholar 

  131. Yi, D., Guoming, L., Gao, L. and Wei, L. (2007) Interaction of arginine oligomer with model membrane. Biochem. Biophys. Res. Commun. 359, 1024–1029.

    Article  CAS  PubMed  Google Scholar 

  132. Kramer, S.D. and Wunderli-Allenspach, H. (2003) No entry for TAT(44–57) into liposomes and intact MDCK cells: novel approach to study membrane permeation of cell-penetrating peptides. Biochim. Biophys. Acta. 1609, 161–169.

    Article  CAS  PubMed  Google Scholar 

  133. Thoren, P.E., Persson, D., Lincoln, P. and Norden, B. (2005) Membrane destabilizing properties of cell-penetrating peptides. Biophys. Chem. 114, 169–179.

    Article  CAS  PubMed  Google Scholar 

  134. Lamaziere, A., Burlina, F., Wolf, C., Chassaing, G., Trugnan, G. and Ayala-Sanmartin, J. (2007) Non-metabolic membrane tubulation and permeability induced by bioactive peptides. PLoS One 2, e201.

    Article  PubMed  CAS  Google Scholar 

  135. Fuchs, S.M. and Raines, R.T. (2004) Pathway for polyarginine entry into mammalian cells. Biochemistry 43, 2438–2444.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Founda tion (SNF) Grant # 31.107793.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Sciecne+Business Media, LLC

About this protocol

Cite this protocol

Sauder, R., Seelig, J., Ziegler, A. (2011). Thermodynamics of Lipid Interactions with Cell-Penetrating Peptides. In: Langel, Ü. (eds) Cell-Penetrating Peptides. Methods in Molecular Biology, vol 683. Humana Press. https://doi.org/10.1007/978-1-60761-919-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-919-2_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-918-5

  • Online ISBN: 978-1-60761-919-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics