Skip to main content

Behavioral Validation in Animal Models of Dementia

  • Protocol
  • First Online:
Animal Models of Dementia

Part of the book series: Neuromethods ((NM,volume 48))

  • 1403 Accesses

Abstract

The development of complex disease models requires the parallel development or optimization of valid behavioral paradigms assessing complex brain-behavior relations. Besides validity of the applied paradigm, standardization at the level of experimental animals, testing procedures, and surroundings is essential to generate reliable data. High levels of validity and standardization can be reached only by skilled and experienced researchers. This chapter summarizes the most frequently used cognitive and behavioral paradigms in the phenotyping of rodent models of dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crawley J (2000) What’s wrong with my mouse? Behavioral phenotyping of transgenic and knockout mice, 1st edn. Wiley-Liss, Wilmington, DE.

    Google Scholar 

  2. Buccafusco JJ (2008) Methods of behavior analysis in neuroscience, 2nd edn. CRC Press/Taylor & Francis Group, Boca Raton, FL.

    Book  Google Scholar 

  3. Slawson JB, Kim EZ, Griffith LC (2009) High-resolution video tracking of locomotion in adult Drosophila melanogaster. J Vis Exp (24). pii:1096. doi: 10.3791/1096.

    Google Scholar 

  4. Pitman JL, DasGupta S, Krashes MJ, Leung B, Perrat PN, Waddell S (2009) There are many ways to train a fly. Fly (Austin) 3:3–9.

    Google Scholar 

  5. Gerber B, Stocker RF, Tanimura T, Thum AS (2009) Smelling, tasting, learning: Drosophila as a study case. Results Probl Cell Differ 47: 139–185.

    PubMed  CAS  Google Scholar 

  6. Emran F, Rihel J, Dowling JE (2008) A behavioral assay to measure responsiveness of zebrafish to changes in light intensities. J Vis Exp (20). pii: 923. doi: 10.3791/923.

    Google Scholar 

  7. Kokel D, Peterson RT (2008) Chemobehavioural phenomics and behaviour-based psychiatric drug discovery in the zebrafish. Brief Funct Genomic Proteomic 7:483–490.

    Article  PubMed  CAS  Google Scholar 

  8. Sison M, Cawker J, Buske C, Gerlai R (2006) Fishing for genes influencing vertebrate behavior: zebrafish making headway. Lab Anim (NY) 35:33–39.

    Article  Google Scholar 

  9. Giles AC, Rankin CH (2009) Behavioral and genetic characterization of habituation using Caenorhabditis elegans. Neurobiol Learn Mem 92:139–146.

    Article  PubMed  Google Scholar 

  10. Mori I, Sasakura H, Kuhara A (2007) Worm thermotaxis: A model system for analyzing thermosensation and neural plasticity. Curr Opin Neurobiol 17:712–719.

    Article  PubMed  CAS  Google Scholar 

  11. Murakami S (2007) Caenorhabditis elegans as a model system to study aging of learning and memory. Mol Neurobiol 35:85–94.

    Article  PubMed  CAS  Google Scholar 

  12. Irwin S (1968) Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioral and physiologic state of the mouse. Psychopharma‑cologia 13:222–257.

    Article  PubMed  CAS  Google Scholar 

  13. Moser VC, McCormick JP, Creason JP, MacPhail RC (1988) Comparison of chlordimeform and carbaryl using a functional observational battery. Fundam Appl Toxicol 11: 189–206

    Article  PubMed  CAS  Google Scholar 

  14. Rogers DC, Fisher EM, Brown SD, Peters J, Hunter AJ, Martin JE (1997) Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm Genome 8:711–713.

    Article  PubMed  CAS  Google Scholar 

  15. D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36:60–90.

    Article  PubMed  Google Scholar 

  16. Bunsey M, Eichenbaum H (1996) Conserva­tion of hippocampal memory function in rats and humans. Nature 379:255–257.

    Article  PubMed  CAS  Google Scholar 

  17. Ohta A, Akiguchi I, Seriu N, et al. (2002) Deterioration in learning and memory of inferential tasks for evaluation of transitivity and symmetry in aged SAMP8 mice. Hippocampus 12:803–810.

    Article  PubMed  Google Scholar 

  18. Van Dijck A, Vloeberghs E, Van Dam D, Staufenbiel M, De Deyn PP (2008) Evaluation of the APP23-model for Alzheimer’s disease in the odour paired-associate test for hippocampus-dependent memory. Behav Brain Res 190:147–151.

    Article  PubMed  CAS  Google Scholar 

  19. Skinner BF (1938) The behavior of organisms. An experimental analysis. D. Appleton-Century Company, New York.

    Google Scholar 

  20. Fanselow MS (1980) Conditioned and unconditional components of post-shock freezing. Pavlov J Biol Sci 15:177–182.

    PubMed  CAS  Google Scholar 

  21. Bevins RA, Besheer J (2006) Object recognition in rats and mice: A one-trial non-matching-to-sample learning task to study ‘recogni‑tion memory’. Nat Protoc 1:1306–1311.

    Article  PubMed  Google Scholar 

  22. Schafe GE, Sollars SI, Bernstein IL (1995) The CS-US interval and taste aversion learning: A brief look. Behav Neurosci 109:799–802.

    Article  PubMed  CAS  Google Scholar 

  23. Gheusi G, Bluthe RM, Goodall G, Dantzer R (1994) Ethological study of the effects of tetrahydroaminoacridine (THA) on social recognition in rats. Psychopharmacology (Berl) 114:644–650.

    Article  CAS  Google Scholar 

  24. Carvell GE, Simons DJ (1990) Biometric analyses of vibrissal tactile discrimination in the rat. J Neurosci 10:2638–2648.

    PubMed  CAS  Google Scholar 

  25. De Deyn PP, Katz IR, Brodathy H, Lyons B, Greenspan A, Burns A (2005) Management of agitation, aggression, and psychosis associated with dementia: A pooled analysis including three randomized, placebo-controlled double-blind trials in nursing home residents treated with risperidone. Clin Neurol Neurosurg 107:497–508.

    Article  PubMed  Google Scholar 

  26. Vitiello MV, Bliwise DL, Prinz PN (1992) Sleep in Alzheimer’s disease and the sundown syndrome. Neurology 42:83–93.

    PubMed  CAS  Google Scholar 

  27. Vloeberghs E, Van Dam D, Engelborghs S, Nagels G, Staufenbiel M, De Deyn PP (2004) Altered circadian locomotor activity in APP23 mice: A model for BPSD disturbances. Eur J Neurosci 20:2757–2766.

    Article  PubMed  Google Scholar 

  28. Valzelli L (1973) The “isolation syndrome” in mice. Psychopharmacologia 31:305–320.

    Article  PubMed  CAS  Google Scholar 

  29. Winslow JT, Miczek KA (1983) Habituation of aggression in mice: Pharmacological evidence of catecholaminergic and serotonergic mediation. Psychopharmacology (Berl) 81(4):286–291.

    Article  CAS  Google Scholar 

  30. Vogel JR, Beer B, Clody DE (1971) A simple and reliable conflict procedure for testing anti-anxiety agents. Psychopharmacologia 21:1–7.

    Article  PubMed  CAS  Google Scholar 

  31. Blizard DA, Bailey DW (1979) Genetic correlation between open-field activity and defecation: Analysis with the CXB recombinant-inbred strains. Behav Genet 9:349–357.

    Article  PubMed  CAS  Google Scholar 

  32. Handley SL, Mithani S (1984) Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ‘fear’-motivated behaviour. Naunyn Schmiedebergs Arch Pharmacol 327:1–5.

    Article  PubMed  CAS  Google Scholar 

  33. Crawley J, Goodwin FK (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13:167–170.

    Article  PubMed  CAS  Google Scholar 

  34. Chourbaji S, Zacher C, Sanchis-Segura C, Dormann C, Vollmayr B, Gass P (2005) Learned helplessness: Validity and reliability of depressive-like states in mice. Brain Res Protoc 16:70–78.

    Article  CAS  Google Scholar 

  35. Sanchis-Segura C, Spanagel R, Henn FA, Vollmayr B (2005) Reduced sensitivity to sucrose in rats bred for helplessness: A study using the matching law. Behav Pharmacol 16:267–270.

    Article  PubMed  CAS  Google Scholar 

  36. Vloeberghs E, Van Dam D, Franck F, et al. (2008) Altered ingestive behavior, weight changes, and intact olfactory sense in an APP overexpression model. Behav Neurosci 122:491–497.

    Article  PubMed  Google Scholar 

  37. Jones BJ, Roberts DJ (1968) A rotarod suitable for quantitation measurements of motor incoordination in naïve mice. Naunyn Schmiedebergs Arch Pharmacol 259:211.

    CAS  Google Scholar 

  38. D’Hooge R, Hartmann D, Manil J, Colin F, Gieselmann V, De Deyn PP (1999) Neuromotor alterations and cerebellar deficits in aged arylsulfatase A-deficient transgenic mice. Neurosci Lett 273:93–96.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Van Dam, D., Van Dijck, A., De Deyn, P.P. (2011). Behavioral Validation in Animal Models of Dementia. In: De Deyn, P., Van Dam, D. (eds) Animal Models of Dementia. Neuromethods, vol 48. Humana Press. https://doi.org/10.1007/978-1-60761-898-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-898-0_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-897-3

  • Online ISBN: 978-1-60761-898-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics