Skip to main content

Pathological Validation of Animal Models of Dementia

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 48))

Abstract

Alzheimer’s disease (AD) and frontotemporal dementia (FTD) are two most common forms of presenile dementia where insoluble protein deposits as intra- or extracellular aggregates. During the past decade, a number of mouse models have been devised based on human mutant genes associated with familial forms of disease. Partly due to such experimental models, enormous progress has been made in the understanding of mechanisms by which amyloid-β or tau protein is toxic to neurons and causes part of the cognitive/behavioral or neuropathological features characteristic of AD or FTD. This chapter enumerates transgenic mouse models commonly used in AD and FTD research and discusses how these have served as an important research tool in defining critical disease-related mechanisms. Furthermore, this chapter also summarizes how these mouse models have contributed in identification of potential drug targets or in the evaluation of novel therapeutic approaches in delaying the onset or progression of these devastating diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kawas CH (2003) Clinical practice. Early Alzheimer’s disease. N Engl J Med 349(11):1056–1063.

    CAS  PubMed  Google Scholar 

  2. Alzheimer A (1907) Über eine eigenartige erkrankung der Hinrinde. Zentralblatt für Nervenheilkunde und Psychiatrie 18:177–179.

    Google Scholar 

  3. Goate A, Chartier HM, Mullan M, et al. (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349(6311):704–706.

    CAS  PubMed  Google Scholar 

  4. Sherrington R, Rogaev EI, Liang Y, et al. (1995) Cloning of a gene bearing mis-sense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760.

    CAS  PubMed  Google Scholar 

  5. Levy-Lahad E, Wasco W, Poorkaj P, et al. (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269(5226):973–977.

    CAS  PubMed  Google Scholar 

  6. Selkoe DJ (1998) The cell biology of ß-­amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol 8(11):447–453.

    CAS  PubMed  Google Scholar 

  7. Kang J, Muller-Hill B (1990) Differential splicing of Alzheimer’s disease amyloid A4 precursor RNA in rat tissues: PreA4(695) mRNA is predominantly produced in rat and human brain. Biochem Biophys Res Commun 166(3):1192–1200.

    CAS  PubMed  Google Scholar 

  8. Cupers P, Orlans I, Craessaerts K, Annaert W, De Strooper B (2001) The amyloid precursor protein (APP)-cytoplasmic fragment generated by gamma-secretase is rapidly degraded but distributes partially in a nuclear fraction of neurones in culture. J Neurochem 78(5):1168–1178.

    CAS  PubMed  Google Scholar 

  9. Roberts SB, Ripellino JA, Ingalls KM, Robakis NK, Felsenstein KM (1994) Non-amyloidogenic cleavage of the beta-amyloid precursor protein by an integral membrane metalloendopeptidase. J Biol Chem 269(4):3111–3116.

    CAS  PubMed  Google Scholar 

  10. Vassar R, Bennett BD, Babu-Khan S, et al. (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE [see comments). Science 286(5440):735–741.

    CAS  PubMed  Google Scholar 

  11. Gowing E, Roher AE, Woods AS, et al. (1994) Chemical characterization of A beta 17–42 peptide, a component of diffuse amyloid deposits of Alzheimer disease. J Biol Chem 269(15):10987–10990.

    CAS  PubMed  Google Scholar 

  12. Rajendran L, Honsho M, Zahn TR, et al. (2006) Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A 103(30):11172–11177.

    CAS  PubMed  Google Scholar 

  13. Kamal A, Almenar-Queralt A, LeBlanc JF, Roberts EA, Goldstein LS (2001) Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 414(6864):643–648.

    CAS  PubMed  Google Scholar 

  14. Dodart JC, Mathis C, Ungerer A (2000) The beta-amyloid precursor protein and its derivatives: From biology to learning and memory processes. Rev Neurosci 11(2–3):75–93.

    CAS  PubMed  Google Scholar 

  15. Zheng H, Jiang M, Trumbauer ME, et al. (1995) b-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 81:525–531.

    CAS  PubMed  Google Scholar 

  16. Lazarov O, Lee M, Peterson DA, Sisodia SS (2002) Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice. J Neurosci 22(22):9785–9793.

    CAS  PubMed  Google Scholar 

  17. Sheng JG, Price DL, Koliatsos VE (2002) Disruption of corticocortical connections ameliorates amyloid burden in terminal fields in a transgenic model of Abeta amyloidosis. J Neurosci 22(22):9794–9799.

    CAS  PubMed  Google Scholar 

  18. Seubert P, Vigo-Pelfrey C, Esch F, et al. (1992) Isolation and quantification of soluble Alzheimer’s b-peptide from biological fluids. Nature 359:325–327.

    CAS  PubMed  Google Scholar 

  19. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 297(5580):353–356.

    CAS  PubMed  Google Scholar 

  20. Wyss-Coray T, Loike JD, Brionne TC, et al. (2003) Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 9(4):453–457.

    CAS  PubMed  Google Scholar 

  21. Saido TC, Iwata N (2006) Metabolism of amyloid beta peptide and pathogenesis of Alzheimer’s disease. Towards presymptomatic diagnosis, prevention and therapy. Neurosci Res 54(4):235–253.

    CAS  PubMed  Google Scholar 

  22. Leissring MA, Farris W, Chang AY, et al. (2003) Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40(6):1087–1093.

    CAS  PubMed  Google Scholar 

  23. Yasojima K, McGeer EG, McGeer PL (2001) Relationship between beta amyloid peptide generating molecules and neprilysin in Alzheimer disease and normal brain. Brain Res 919(1):115–121.

    CAS  PubMed  Google Scholar 

  24. Shibata M, Yamada S, Kumar SR, et al. (2000) Clearance of Alzheimer’s amyloid-ss(1–40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 106(12):1489–1499.

    CAS  PubMed  Google Scholar 

  25. Zlokovic BV (2005) Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci 28(4):202–208.

    CAS  PubMed  Google Scholar 

  26. Zlokovic BV (2004) Clearing amyloid through the blood-brain barrier. J Neurochem 89(4):807–811.

    CAS  PubMed  Google Scholar 

  27. Bading JR, Yamada S, Mackic JB, et al. (2002) Brain clearance of Alzheimer’s amyloid-beta 40 in the squirrel monkey: A SPECT study in a primate model of cerebral amyloid angiopathy. J Drug Target 10(4):359–368.

    CAS  PubMed  Google Scholar 

  28. Kida S, Pantazis A, Weller RO (1993) CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19(6):480–488.

    CAS  PubMed  Google Scholar 

  29. Weller RO, Massey A, Newman TA, Hutchings M, Kuo YM, Roher AE (1998) Cerebral amyloid angiopathy: Amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am J Pathol 153(3):725–733.

    CAS  PubMed  Google Scholar 

  30. Calhoun ME, Burgermeister P, Phinney AL, et al. (1999) Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci U S A 96(24):14088–14093.

    CAS  PubMed  Google Scholar 

  31. Bateman RJ, Munsell LY, Morris JC, Swarm R, Yarasheski KE, Holtzman DM (2006) Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat Med 12(7):856–861.

    CAS  PubMed  Google Scholar 

  32. Kawai M, Kalaria RN, Cras P, et al. (1993) Degeneration of vascular muscle cells in cerebral amyloid angiopathy of Alzheimer disease. Brain Res 623(1):142–146.

    CAS  PubMed  Google Scholar 

  33. Winkler DT, Biedermann L, Tolnay M, et al. (2002) Thrombolysis induces cerebral hemorrhage in a mouse model of cerebral amyloid angiopathy. Ann Neurol 51(6):790–793.

    PubMed  Google Scholar 

  34. Kumar-Singh S, Pirici D, McGowan E, et al. (2005) Dense core plaques in Tg2576 and PSAPP mouse models of Alzheimer’s disease are centered on vessel walls. Am J Pathol 167:527–543.

    CAS  PubMed  Google Scholar 

  35. Mucke L, Masliah E, Yu GQ, et al. (2000) High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: Synaptotoxicity without plaque formation. J Neurosci 20(11):4050–4058.

    CAS  PubMed  Google Scholar 

  36. Dickson DW (2004) Commentary - Building a more perfect beast - APP transgenic mice with neuronal loss. Am J Pathol 164(4):1143–1146.

    PubMed  Google Scholar 

  37. Mattson MP (1997) Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 77(4):1081–1132.

    CAS  PubMed  Google Scholar 

  38. Meda L, Cassatella MA, Szendrei GI, et al. (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374(6523):647–650.

    CAS  PubMed  Google Scholar 

  39. El KJ, Hickman SE, Thomas CA, Cao L, Silverstein SC, Loike JD (1996) Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature 382(6593):716–719.

    Google Scholar 

  40. Breitner JC, Gau BA, Welsh KA, et al. (1994) Inverse association of anti-inflammatory treatments and Alzheimer’s disease: Initial results of a co-twin control study. Neurology 44(2):227–232.

    CAS  PubMed  Google Scholar 

  41. Kumar-Singh S, Cras P, Wang R, et al. (2002) Dense-core senile plaques in the Flemish variant of Alzheimer’s disease are vasocentric. Am J Pathol 161(2):507–520.

    CAS  PubMed  Google Scholar 

  42. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 72(5):1858–1862.

    CAS  PubMed  Google Scholar 

  43. LoPresti P, Szuchet S, Papasozomenos SC, Zinkowski RP, Binder LI (1995) Functional implications for the microtubule-associated protein tau: Localization in oligoden­drocytes. Proc Natl Acad Sci U S A 92(22):10369–10373.

    CAS  PubMed  Google Scholar 

  44. Gu Y, Oyama F, Ihara Y (1996) Tau is widely expressed in rat tissues. J Neurochem 67(3):1235–1244.

    CAS  PubMed  Google Scholar 

  45. Rademakers R, Cruts M, Van Broeckhoven C (2004) The role of tau (MAPT) in frontotemporal dementia and related tauopathies. Hum Mutat 24(4):277–295.

    CAS  PubMed  Google Scholar 

  46. Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 33(1):95–130.

    CAS  PubMed  Google Scholar 

  47. Harada A, Oguchi K, Okabe S, et al. (1994) Altered microtubule organization in small-caliber axons of mice lacking tau-protein. Nature 369(6480):488–491.

    CAS  PubMed  Google Scholar 

  48. Kanemaru K, Takio K, Miura R, Titani K, Ihara Y (1992) Fetal-type phosphorylation of the tau in paired helical filaments. J Neurochem 58(5):1667–1675.

    CAS  PubMed  Google Scholar 

  49. Mott RT, Dickson DW, Trojanowski JQ, et al. (2005) Neuropathologic, biochemical, and molecular characterization of the frontotemporal dementias. J Neuropathol Exp Neurol 64(5):420–428.

    CAS  PubMed  Google Scholar 

  50. Rogaev EI, Sherrington R, Rogaeva EA, et al. (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376:775–778.

    CAS  PubMed  Google Scholar 

  51. Roses AD (1996) Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med 47:387–400.

    CAS  PubMed  Google Scholar 

  52. Glenner GG, Wong CW (1984) Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 122:885–890.

    Google Scholar 

  53. Masters CL, Simms G, Weinman NA, Multhaup G, McDonals BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249.

    CAS  PubMed  Google Scholar 

  54. Van Broeckhoven C, Haan J, Bakker E, et al. (1990) Amyloid beta protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science 248(4959):1120–1122.

    CAS  PubMed  Google Scholar 

  55. Levy E, Carman MD, Fernandez-Madrid IJ, et al. (1990) Mutation of the Alzheimer’s ­disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248(4959):1124–1126.

    CAS  PubMed  Google Scholar 

  56. van Duinen SG, Castaño EM, Prelli F, Bots GTAB, Luyendijk W, Frangione B (1987) Hereditary cerebral hemorrhage with amyloidosis in patients of Dutch origin is related to Alzheimer disease. Proc Natl Acad Sci USA 84:5991–5994.

    CAS  PubMed  Google Scholar 

  57. Haan J, Hardy JA, Roos RAC (1991) Hereditary cerebral hemorrhage with amyloidosis-Dutch type: Its importance for Alzheimer research. TINS 14:231–234.

    CAS  PubMed  Google Scholar 

  58. Maat-Schieman ML, Yamaguchi H, van Duinen SG, Natte R, Roos RA (2000) Age-related plaque morphology and C-terminal heterogeneity of amyloid beta in Dutch-type hereditary cerebral hemorrhage with amyloidosis. Acta Neuropathol (Berl) 99(4):409–419.

    CAS  Google Scholar 

  59. Bornebroek M, Haan J, Van Buchem MA, et al. (1996) White matter lesions and cognitive deterioration in presymptomatic carriers of the amyloid precursor protein gene codon 693 mutation. Arch Neurol 53(1):43–48.

    CAS  PubMed  Google Scholar 

  60. De Jonghe C, Zehr C, Yager D, et al. (1998) Flemish and Dutch mutations in amyloid beta precursor protein have different effects on amyloid beta secretion. Neurobiol Dis 5(0969–9961):281–286.

    CAS  PubMed  Google Scholar 

  61. Bornebroek M, De JC, Haan J, et al. (2003) Hereditary cerebral hemorrhage with amyloidosis Dutch type (AbetaPP 693): Decreased plasma amyloid-beta 42 concentration. Neurobiol Dis 14(3):619–623.

    CAS  PubMed  Google Scholar 

  62. Miravalle L, Tokuda T, Chiarle R, et al. (2000) Substitutions at codon 22 of Alzheimer’s A{beta} peptide induce conformational changes and diverse apoptotic effects in human cerebral endothelial cells. J Biol Chem 275(35):27110–27116.

    CAS  PubMed  Google Scholar 

  63. Kumar-Singh S, Julliams A, Nuyens D, et al. (2002) In vitro studies of Flemish, Dutch, and wild type Amyloid ß (Aß) provide evidence for a two-stage Aß neurotoxicity. Neurobiol Dis 11(2):300–310.

    Google Scholar 

  64. Hendriks L, van Duijn CM, Cras P, et al. (1992) Presenile dementia and cerebral haemorrhage linked to a mutation at condon 692 of the b-amyloid precursor protein gene. Nat Genet 1:218–221.

    CAS  PubMed  Google Scholar 

  65. Cras P, van Harskamp F, Hendriks L, et al. (1998) Presenile Alzheimer dementia characterized by amyloid angiopathy and large amyloid core type senile plaques in the APP 692Ala Gly mutation. Acta Neuropathol 96(3):253–260.

    CAS  PubMed  Google Scholar 

  66. Brooks WS, Kwok JB, Halliday GM, et al. (2004) Hemorrhage is uncommon in new Alzheimer family with Flemish amyloid precursor protein mutation. Neurology 63(9):1613–1617.

    CAS  PubMed  Google Scholar 

  67. Tagliavini F, Rossi G, Padovani A, et al. (1999) A new APP mutation related to heriditary cerebral haemorrhage. Alzheimer’s Rep 2:23.

    Google Scholar 

  68. Nilsberth C, Westlind-Danielsson A, Eckman C, et al. (2001) The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nat Neurosci 4(9):887–893.

    CAS  PubMed  Google Scholar 

  69. Shin Y, Cho HS, Rebeck GW, Greenberg SM (2002) Vascular changes in Iowa-type hereditary cerebral amyloid angiopathy. Ann N Y Acad Sci 977:245–251.

    PubMed  Google Scholar 

  70. Mullan M, Crawford F, Axelman K, et al. (1992) A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of b-amyloid. Nature Genet 1:345–347.

    CAS  PubMed  Google Scholar 

  71. Citron M, Oltersdorf T, Haass C, et al. (1992) Mutation of the b-amyloid precursor protein in familial Alzheimer’s disease increases b-protein production. Nature 360:672–674.

    CAS  PubMed  Google Scholar 

  72. Mann DM, Iwatsubo T, Ihara Y, et al. (1996) Predominant deposition of amyloid-beta 42(43) in plaques in cases of Alzheimer’s disease and hereditary cerebral hemorrhage associated with mutations in the amyloid precursor protein gene. Am J Pathol 148(4):1257–1266.

    CAS  PubMed  Google Scholar 

  73. Suzuki N, Cheung TT, Cai XD, et al. (1994) An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science 264(5163):1336–1340.

    CAS  PubMed  Google Scholar 

  74. Cai XD, Golde TE, Younkin SG (1993) Release of excess amyloid beta protein from a mutant amyloid beta protein precursor. Science 259(5094):514–516.

    CAS  PubMed  Google Scholar 

  75. Kumar-Singh S, Theuns J, Van Broeck B, et al. (2006) Mean age-of-onset of familial alzheimer disease caused by presenilin mutations correlates with both increased Abeta42 and decreased Abeta40. Hum Mutat 27(7):686–695.

    CAS  PubMed  Google Scholar 

  76. Kumar-Singh S, De Jonghe C, Cruts M, et al. (2000) Nonfibrillar diffuse amyloid deposition due to a gamma(42)-secretase site mutation points to an essential role for N-truncated abeta(42) in Alzheimer’s disease. Hum Molec Genet 9(18):2589–2598.

    CAS  PubMed  Google Scholar 

  77. De Jonghe C, Esselens C, Kumar-Singh S, et al. (2001) Pathogenic APP mutations near the gamma-secretase cleavage site differentially affect Abeta secretion and APP C-terminal fragment stability. Hum Molec Genet 10(16):1665–1671.

    CAS  PubMed  Google Scholar 

  78. Rovelet-Lecrux A, Hannequin D, Raux G, et al. (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38(1):24–26.

    CAS  PubMed  Google Scholar 

  79. Sleegers K, Brouwers N, Gijselinck I, et al. (2006) APP duplication is sufficient to cause early onset Alzheimer’s dementia with cerebral amyloid angiopathy. Brain 129(Pt 11):2977–2983

    PubMed  Google Scholar 

  80. Lemere CA, Blusztajn JK, Yamaguchi H, Wisniewski T, Saido TC, Selkoe DJ (1996) Sequence of deposition of heterogeneous amyloid beta-peptides and APOE in Down syndrome: Implications for initial events in amyloid plaque formation. Neurobiol Dis 3(1):16–32.

    CAS  PubMed  Google Scholar 

  81. Kumar-Singh S (2008) Cerebral amyloid angiopathy: Pathogenetic mechanisms and link to dense amyloid plaques. Genes Brain Behav 7(Suppl. 1):67–82.

    CAS  PubMed  Google Scholar 

  82. De Strooper B, Saftig P, Craessaerts K, et al. (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391(6665):387–390.

    CAS  PubMed  Google Scholar 

  83. Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S (1997) Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89(4):629–639

    CAS  PubMed  Google Scholar 

  84. Hartmann D, De Strooper B, Saftig P (1999) Presenilin-1 deficiency leads to loss of Cajal-Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly. Curr Biol 9(14):719–727.

    CAS  PubMed  Google Scholar 

  85. Bentahir M, Nyabi O, Verhamme J, et al. (2006) Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms. J Neurochem 96(3):732–742.

    CAS  PubMed  Google Scholar 

  86. Dermaut B, Kumar-Singh S, De Jonghe C, et al. (2001) Cerebral amyloid angiopathy is a pathogenic lesion in Alzheimer’s disease due to a novel presenilin 1 mutation. Brain 124(Pt 12):2383–2392.

    CAS  PubMed  Google Scholar 

  87. Nochlin D, Bird TD, Nemens EJ, Ball MJ, Sumi SM (1998) Amyloid angiopathy in a Volga German family with Alzheimer’s disease and a presenilin-2 mutation (N141I). Ann Neurol 43(1):131–135.

    CAS  PubMed  Google Scholar 

  88. Hutton M, Lendon CL, Rizzu P, et al. (1998) Association of missense and 5’-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393(6686):702–705.

    CAS  PubMed  Google Scholar 

  89. Foster NL, Wilhelmsen K, Sima AA, Jones MZ, D’Amato CJ, Gilman S (1997) Frontotemporal dementia and parkinsonism linked to chromosome 17: A consensus conference. Conference Participants. Ann Neurol 41(6):706–715.

    CAS  PubMed  Google Scholar 

  90. Poorkaj P, Bird TD, Wijsman E, et al. (1998) Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 43(6):815–825.

    CAS  PubMed  Google Scholar 

  91. Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci U S A 95(13):7737–7741.

    CAS  PubMed  Google Scholar 

  92. Dickson DW, Bergeron C, Chin SS, et al. (2002) Office of Rare Diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol 61(11):935–946.

    CAS  PubMed  Google Scholar 

  93. Kawarabayashi T, Shoji M, Younkin LH, et al. (2004) Dimeric amyloid beta protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated tau accumulation in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 24(15):3801–3809.

    CAS  PubMed  Google Scholar 

  94. Shankar GM, Li S, Mehta TH, et al. (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14(8):837–842.

    CAS  PubMed  Google Scholar 

  95. Divry P (1934) Etude histochimique des plaques séniles. J Neurol Psychiat 27:643–657.

    Google Scholar 

  96. Glenner GG (1980) Amyloid deposits and amyloidosis. N Engl J Med 302(23):1283–1292.

    CAS  PubMed  Google Scholar 

  97. Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y (1994) Visualization of Aß 42(43) and Aß 40 in senile plaques with end-specific Aß monoclonals: evidence that an initially deposited species is Ab 42(43). Neuron 13(1):45–53.

    CAS  PubMed  Google Scholar 

  98. Bugiani O, Tagliavini F, Giaccone G (1991) Preamyloid deposits, amyloid deposits, and senile plaques in Alzheimer’s disease, Down syndrome, and aging. Ann N Y Acad Sci 640:122–128.

    CAS  PubMed  Google Scholar 

  99. Wisniewski HM, Bancher C, Barcikowska M, Wen GY, Currie J (1989) Spectrum of morphological appearance of amyloid deposits in Alzheimer’s disease. Acta Neuropathol (Berl) 78(4):337–347.

    CAS  Google Scholar 

  100. Dickson DW (1997) The pathogenesis of senile plaques. J Neuropathol Exp Neurol 56(4):321–339.

    CAS  PubMed  Google Scholar 

  101. Yamaguchi H, Nakazato Y, Hirai S, Shoji M, Harigaya Y (1989) Electron micrograph of diffuse plaques. Initial stage of senile plaque formation in the Alzheimer brain. Am J Pathol 135(4):593–597.

    CAS  PubMed  Google Scholar 

  102. Autiero M, Waltenberger J, Communi D, et al. (2003) Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 9(7):936–943.

    CAS  PubMed  Google Scholar 

  103. Kiemer AK, Furst R, Vollmar AM (2005) Vasoprotective actions of the atrial natriuretic peptide. Curr Med Chem Cardiovasc Hematol Agents 3(1):11–21.

    CAS  PubMed  Google Scholar 

  104. Iwatsubo T, Saido TC, Mann DM, Lee VM, Trojanowski JQ (1996) Full-length amyloid-beta (1–42(43)) and amino-terminally modified and truncated amyloid-beta 42(43) deposit in diffuse plaques. Am J Pathol 149(6):1823–1830.

    CAS  PubMed  Google Scholar 

  105. Storkebaum E, Lambrechts D, Dewerchin M, et al. (2005) Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 8(1):85–92.

    CAS  PubMed  Google Scholar 

  106. Dickson DW (1999) Microglia in Alzheimer’s disease and transgenic models. How close the fit? Am J Pathol 154(6):1627–1631.

    CAS  PubMed  Google Scholar 

  107. Thal DR, Capetillo-Zarate E, Del Tredici K, Braak H (2006) The development of amyloid beta protein deposits in the aged brain. Sci Aging Knowledge Environ 2006(6):re1.

    Google Scholar 

  108. Simchowicz T (1911) Sur la signification des plaques seniles et sur la formula senile de l’ecorde cerebrale. Rev Neurol 1:221–227.

    Google Scholar 

  109. Fukumoto H, Asami-Odaka A, Suzuki N, Shimada H, Ihara Y, Iwatsubo T (1996) Amyloid beta protein deposition in normal aging has the same characteristics as that in Alzheimer’s disease. Predominance of A beta 42(43) and association of A beta 40 with cored plaques. Am J Pathol 148(1):259–265.

    CAS  PubMed  Google Scholar 

  110. McKee AC, Kosik KS, Kowall NW (1991) Neuritic pathology and dementia in Alzheimer’s disease. Ann Neurol 30:156–165.

    CAS  PubMed  Google Scholar 

  111. Liau LM, Lallone RL, Seitz RS, et al. (2000) Identification of a human glioma-associated growth factor gene, granulin, using differential immuno-absorption. Cancer Res 60(5):1353–1360.

    CAS  PubMed  Google Scholar 

  112. Suzuki M, Nishiahara M (2002) Granulin precursor gene: A sex steroid-inducible gene involved in sexual differentiation of the rat brain. Mol Genet Metab 75(1):31–37.

    CAS  PubMed  Google Scholar 

  113. Martin J-J, Gheuens J, Bruyland M, et al. (1991) Early-onset Alzheimer’s disease in 2 large Belgian families. Neurology 41:62–68.

    CAS  PubMed  Google Scholar 

  114. Scholtz W (1938) Studien zur Pathologie der Hirngefässe. II. Die drüsige Entartung der Hirnarterien und -capillären. Z Gesamte Neurol Psychiat 162:694–715.

    Google Scholar 

  115. Vinters HV (1987) Cerebral amyloid angiopathy. A critical review. Stroke 18(2):311–324.

    CAS  PubMed  Google Scholar 

  116. Preston SD, Steart PV, Wilkinson A, Nicoll JAR, Weller RO (2003) Capillary and arterial cerebral amyloid angiopathy in Alzheimer’s disease: Defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol Appl Neurobiol 29(2):106–117.

    CAS  PubMed  Google Scholar 

  117. Wisniewski HM, Wegiel J (1994) Beta-amyloid formation by myocytes of leptomeningeal vessels. Acta Neuropathol (Berl) 87(3):233–241.

    CAS  Google Scholar 

  118. Morel F, Wildi E (1952) General and cellular pathochemistry of senile and presenile alterations of the brain. Proc 1st Int Cong Neuropathol Rome 347–374.

    Google Scholar 

  119. Attems J, Jellinger KA (2004) Only cerebral capillary amyloid angiopathy correlates with Alzheimer pathology-a pilot study. Acta Neuropathol (Berl) 107(2):83–90.

    Google Scholar 

  120. Roher AE, Kuo YM, Esh C, et al. (2003) Cortical and leptomeningeal cerebrovascular amyloid and white matter pathology in Alzheimer’s disease. Mol Med 9(3–4):112–122.

    PubMed  Google Scholar 

  121. Itoh Y, Yamada M, Hayakawa M, Otomo E, Miyatake T (1993) Cerebral amyloid angiopathy: A significant cause of cerebellar as well as lobar cerebral hemorrhage in the elderly. J Neurol Sci 116(2):135–141.

    CAS  PubMed  Google Scholar 

  122. Peers MC, Lenders MB, Defossez A, Delacourte A, Mazzuca M (1988) Cortical angiopathy in Alzheimers-disease – the formation of dystrophic perivascular neurites is related to the exudation of amyloid fibrils from the pathological vessels. Virchows Arch A Pathol Anat Histopathol 414(1):15–20.

    CAS  PubMed  Google Scholar 

  123. Games D, Adams D, Alessandrini R, et al. (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373(6514):523–527.

    CAS  PubMed  Google Scholar 

  124. Hsiao K, Chapman P, Nilsen S, et al. (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274(5284):99–102.

    CAS  PubMed  Google Scholar 

  125. Sturchler-Pierrat C, Abramowski D, Duke M, et al. (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A 94(24):13287–13292.

    CAS  PubMed  Google Scholar 

  126. Wirths O, Multhaup G, Bayer TA (2004) A modified beta-amyloid hypothesis: Intraneuronal accumulation of the beta-amyloid peptide - the first step of a fatal cascade. J Neurochem 91(3):513–520.

    CAS  PubMed  Google Scholar 

  127. Gouras GK, Almeida CG, Takahashi RH (2005) Intraneuronal Abeta accumulation and origin of plaques in Alzheimer’s disease. Neurobiol Aging 26(9):1235–1244.

    CAS  PubMed  Google Scholar 

  128. Perry G, Rizzuto N, Autilio-Gambetti L, Gambetti P (1985) Paired helical filaments from Alzheimer disease patients contain cytoskeletal components. Proc Natl Acad Sci U S A 82(11):3916–3920.

    CAS  PubMed  Google Scholar 

  129. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83(13):4913–4917.

    CAS  PubMed  Google Scholar 

  130. Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: Identification as the microtubule-associated protein tau. Proc Natl Acad Sci U S A 85(11):4051–4055.

    CAS  PubMed  Google Scholar 

  131. Kosik KS, Orecchio LD, Binder L, Trojanowski JQ, Lee VM, Lee G (1988) Epitopes that span the tau molecule are shared with paired helical filaments. Neuron 1(9):817–825.

    CAS  PubMed  Google Scholar 

  132. Bierer LM, Hof PR, Purohit DP, et al. (1995) Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease. Arch Neurol 52(1):81–88.

    CAS  PubMed  Google Scholar 

  133. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82(4):239–259.

    CAS  Google Scholar 

  134. Dickson DW (1998) Pick’s disease: A modern approach. Brain Pathol 8(2):339–354.

    CAS  PubMed  Google Scholar 

  135. Buee L, Delacourte A (1999) Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick’s disease. Brain Pathol 9(4):681–693.

    CAS  PubMed  Google Scholar 

  136. Tolnay M, Probst A (1999) REVIEW: Tau protein pathology in Alzheimer’s disease and related disorders. Neuropathol Appl Neurobiol 25(3):171–187.

    CAS  PubMed  Google Scholar 

  137. Zhukareva V, Mann D, Pickering-Brown S, et al. (2002) Sporadic Pick’s disease: A tauopathy characterized by a spectrum of pathological tau isoforms in gray and white matter. Ann Neurol 51(6):730–739.

    PubMed  Google Scholar 

  138. Kumar-Singh S, Van Broeckhoven C (2007) Frontotemporal lobar degeneration: Current concepts and advances. Brain Res 17(1):104–114.

    CAS  Google Scholar 

  139. Coffey DS (1998) Self-organization, complexity and chaos: The new biology for medicine. Nat Med 4(8):882–885.

    CAS  PubMed  Google Scholar 

  140. Dodart JC, Meziane H, Mathis C, Bales KR, Paul SM, Ungerer A (1999) Behavioral disturbances in transgenic mice overexpressing the V717F beta-amyloid precursor protein. Behav Neurosci 113(5):982–990.

    CAS  PubMed  Google Scholar 

  141. Moechars D, Dewachter I, Lorent K, et al. (1999) Early phenotypic changes in transgenic mice that overexpress different mutants of Amyloid precursor protein in brain. J Biol Chem 10:6483–6492.

    Google Scholar 

  142. Van Dorpe J, Smeijers L, Dewachter I, et al. (2000) Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the london mutant of human APP in neurons [In Process Citation). Am J Pathol 157(4):1283–1298.

    CAS  PubMed  Google Scholar 

  143. McGowan E, Sanders S, Iwatsubo T, et al. (1999) Amyloid phenotype characterization of transgenic mice overexpressing both mutant amyloid precursor protein and mutant presenilin 1 transgenes. Neurobiol Dis 6(4):231–244.

    CAS  PubMed  Google Scholar 

  144. Irizarry MC, Soriano F, McNamara M, et al. (1997) A beta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J Neurosci 17(18):7053–7059.

    CAS  PubMed  Google Scholar 

  145. Calhoun ME, Wiederhold KH, Abramowski D, et al. (1998) Neuron loss in APP transgenic mice. Nature 395(6704):755–756.

    CAS  PubMed  Google Scholar 

  146. Winkler DT, Bondolfi L, Herzig MC, et al. (2001) Spontaneous hemorrhagic stroke in a mouse model of cerebral amyloid angiopathy. J Neurosci 21(5):1619–1627.

    CAS  PubMed  Google Scholar 

  147. Van Dam D., D’Hooge R, Staufenbiel M, Van GC, Van MF, De Deyn PP (2003) Age-dependent cognitive decline in the APP23 model precedes amyloid deposition. Eur J Neurosci 17(2):388–396.

    PubMed  Google Scholar 

  148. Van Broeck B, Vanhoutte G, Pirici D, et al. (2008) Intraneuronal amyloid beta and reduced brain volume in a novel APP T714I mouse model for Alzheimer’s disease. Neurobiol Aging 29(2):241–252.

    CAS  PubMed  Google Scholar 

  149. Wirths O, Multhaup G, Czech C, et al. (2001) Intraneuronal Abeta accumulation precedes plaque formation in beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett 306(1–2):116–120.

    CAS  PubMed  Google Scholar 

  150. Van Broeck B, Vanhoutte G, Cuijt I, et al. (2008) Reduced brain volumes in mice expressing APP-Austrian mutation but not in mice expressing APP-Swedish-Austrian mutations. Neurosci Lett 447(2–3):143–147.

    CAS  PubMed  Google Scholar 

  151. Casas C, Sergeant N, Itier JM, et al. (2004) Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. Am J Pathol 165(4):1289–1300.

    CAS  PubMed  Google Scholar 

  152. Oddo S, Caccamo A, Shepherd JD, et al. (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421.

    CAS  PubMed  Google Scholar 

  153. Chishti MA, Yang DS, Janus C, et al. (2001) Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem 276(24):21562–21570.

    CAS  PubMed  Google Scholar 

  154. Kumar-Singh S, Dewachter I, Moechars D, et al. (2000) Behavioral disturbances without amyloid deposits in mice overexpressing human amyloid precursor protein with Flemish (A692G) or Dutch (E693Q) mutation. Neurobiol Dis 7(1):9–22.

    CAS  PubMed  Google Scholar 

  155. Herzig MC, Winkler DT, Burgermeister P, et al. (2004) A beta is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat Neurosci 7(9):954–960.

    CAS  PubMed  Google Scholar 

  156. Davis J, Xu F, Deane R, et al. (2004) Early-onset and robust cerebral microvascular accumulation of amyloid beta-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid beta-protein precursor. J Biol Chem 279(19):20296–20306.

    CAS  PubMed  Google Scholar 

  157. Miao J, Xu F, Davis J, Otte-Holler I, Verbeek MM, Van Nostrand WE (2005) Cerebral microvascular Aß protein deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant AßPP. Am J Pathol 167(2):505–515.

    CAS  PubMed  Google Scholar 

  158. Cheng IH, Palop JJ, Esposito LA, Bien-Ly N, Yan F, Mucke L (2004) Aggressive amyloidosis in mice expressing human amyloid peptides with the Arctic mutation. Nat Med 10(11):1190–1192.

    CAS  PubMed  Google Scholar 

  159. Duff K, Eckman C, Zehr C, et al. (1996) Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383(6602):710–713

    CAS  PubMed  Google Scholar 

  160. Borchelt DR, Ratovitski T, vanLare J, et al. (1997) Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19(4):939–945.

    CAS  PubMed  Google Scholar 

  161. Holcomb L, Gordon MN, McGowan E, et al. (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 4(1):97–100.

    CAS  PubMed  Google Scholar 

  162. Takeuchi A, Irizarry MC, Duff K, et al. (2000) Age-related amyloid beta deposition in transgenic mice overexpressing both Alzheimer mutant presenilin 1 and amyloid beta precursor protein Swedish mutant is not associated with global neuronal loss. Am J Pathol 157(1):331–339.

    CAS  PubMed  Google Scholar 

  163. Dewachter I, Van DJ, Smeijers L, et al. (2000) Aging increased amyloid peptide and caused amyloid plaques in brain of old APP/V717I transgenic mice by a different mechanism than mutant presenilin1. J Neurosci 20(17):6452–6458.

    CAS  PubMed  Google Scholar 

  164. De Jonghe C, Cras P, Vanderstichele H, et al. (1999) Evidence that Abeta42 plasma levels in presenilin-1 mutation carriers do not allow for prediction of their clinical phenotype. Neurobiol Dis 6(4):280–287.

    CAS  PubMed  Google Scholar 

  165. McGowan E, Pickford F, Kim J, et al. (2005) Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 47(2):191–199.

    CAS  PubMed  Google Scholar 

  166. Vidal R, Frangione B, Rostagno A, et al. (1999) A stop-codon mutation in the BRI gene associated with familial British dementia. Nature 399(6738):776–781

    CAS  PubMed  Google Scholar 

  167. Lewis J, McGowan E, Rockwood J, et al. (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25(4):402–405.

    CAS  PubMed  Google Scholar 

  168. Lewis J, Dickson DW, Lin WL, et al. (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293(5534):1487–1491

    CAS  PubMed  Google Scholar 

  169. Guo Q, Fu W, Sopher BL, et al. (1999) Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nat Med 5(1):101–106.

    CAS  PubMed  Google Scholar 

  170. Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM (2005) Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45(5):675–688.

    CAS  PubMed  Google Scholar 

  171. Kertesz A, Kawarai T, Rogaeva E, et al. (2000) Familial frontotemporal dementia with ubiquitin-positive, tau-negative inclusions. Neurology 54(4):818–827.

    CAS  PubMed  Google Scholar 

  172. Forman MS, Farmer J, Johnson JK, et al. (2006) Frontotemporal dementia: Clinicopathological correlations. Ann Neurol 59(6):952–962.

    PubMed  Google Scholar 

  173. Watts GD, Wymer J, Kovach MJ, et al. (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36(4):377–381.

    CAS  PubMed  Google Scholar 

  174. Skibinski G, Parkinson NJ, Brown JM, et al. (2005) Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet 37(8):806–808.

    CAS  PubMed  Google Scholar 

  175. Baker M, Mackenzie IR, Pickering-Brown SM, et al. (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442(7105):916–919.

    CAS  PubMed  Google Scholar 

  176. Cruts M, Gijselinck I, van der ZJ, et al. (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442(7105):920–924.

    CAS  PubMed  Google Scholar 

  177. Brouwers N, Sleegers K, Engelborghs S, et al. (2008) Genetic variability in progranulin contributes to risk for clinically diagnosed Alzheimer disease. Neurology 71(9):656–664.

    CAS  PubMed  Google Scholar 

  178. Neumann M, Sampathu DM, Kwong LK, et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133.

    CAS  PubMed  Google Scholar 

  179. Kayasuga Y, Chiba S, Suzuki M, et al. (2007) Alteration of behavioural phenotype in mice by targeted disruption of the progranulin gene. Behav Brain Res 185(2):110–118.

    CAS  PubMed  Google Scholar 

  180. Chiba S, Suzuki M, Yamanouchi K, Nishihara M (2007) Involvement of granulin in estrogen-induced neurogenesis in the adult rat hippocampus. J Reprod Dev 53(2):297–307.

    CAS  PubMed  Google Scholar 

  181. Mendez MF, McMurtray A, Chen AK, Shapira JS, Mishkin F, Miller BL (2006) Functional neuroimaging and presenting psychiatric features in frontotemporal dementia. J Neurol Neurosurg Psychiatry 77(1):4–7.

    CAS  PubMed  Google Scholar 

  182. Huey ED, Putnam KT, Grafman J (2006) A systematic review of neurotransmitter deficits and treatments in frontotemporal dementia. Neurology 66(1):17–22.

    CAS  PubMed  Google Scholar 

  183. Lebert F, Stekke W, Hasenbroekx C, Pasquier F (2004) Frontotemporal dementia: A randomised, controlled trial with trazodone. Dement Geriatr Cogn Disord 17(4):355–359.

    CAS  PubMed  Google Scholar 

  184. Yamaguchi H, Yamazaki T, Lemere CA, Frosch MP, Selkoe DJ (1992) Beta amyloid is focally deposited within the outer basement membrane in the amyloid angiopathy of Alzheimer’s disease. An immunoelec­tron microscopic study. Am J Pathol 141(1):249–259.

    CAS  PubMed  Google Scholar 

  185. Natte R, de Boer WI, Maat-Schieman ML, et al. (1999) Amyloid beta precursor protein-mRNA is expressed throughout cerebral vessel walls. Brain Res 828(1–2):179–183.

    CAS  PubMed  Google Scholar 

  186. Verbeek MM, De Waal RM, Schipper JJ, Van Nostrand WE (1997) Rapid degeneration of cultured human brain pericytes by amyloid beta protein. J Neurochem 68(3):1135–1141.

    CAS  PubMed  Google Scholar 

  187. Nicoll JAR, Yamada M, Frackowiak J, Mazur-Kolecka B, Weller RO (2004) Cerebral amyloid angiopathy plays a direct role in the pathogenesis of Alzheimer’s disease Pro-CAA position statement. Neurobiol Aging 25(5):589–597.

    CAS  PubMed  Google Scholar 

  188. Gravina SA, Ho L, Eckman CB, et al. (1995) Amyloid beta protein (A beta) in Alzheimer’s disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43). J Biol Chem 270(13):7013–7016.

    CAS  PubMed  Google Scholar 

  189. Cullen KM, Kocsi Z, Stone J (2006) Microvascular pathology in the aging human brain: Evidence that senile plaques are sites of microhaemorrhages. Neurobiol Aging 27(12):1786–1796.

    CAS  PubMed  Google Scholar 

  190. Pike CJ, Overman MJ, Cotman CW (1995) Amino-terminal deletions enhance aggregation of beta-amyloid peptides in vitro. J Biol Chem 270(41):23895–23898.

    CAS  PubMed  Google Scholar 

  191. Shin RW, Ogino K, Kondo A, et al. (1997) Amyloid beta-protein (Abeta) 1–40 but not Abeta1–42 contributes to the experimental formation of Alzheimer disease amyloid fibrils in rat brain. J Neurosci 17(21):8187–8193.

    CAS  PubMed  Google Scholar 

  192. Radde R, Bolmont T, Kaeser SA, et al. (2006) Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep 7(9):940–946.

    CAS  PubMed  Google Scholar 

  193. Gotz J, Chen F, Van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293(5534):1491–1495.

    CAS  PubMed  Google Scholar 

  194. Van Broeck B, Van Broeckhoven C, Kumar-Singh S (2007) Current insights into molecular mechanisms of Alzheimer disease and their implications for therapeutic approaches. Neurodegener Dis 4(5):349–365.

    CAS  PubMed  Google Scholar 

  195. Schenk D, Barbour R, Dunn W, et al. (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse (see comments). Nature 400(6740):173–177.

    CAS  PubMed  Google Scholar 

  196. Janus C, Pearson J, McLaurin J, et al. (2000) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408(6815):979–982.

    CAS  PubMed  Google Scholar 

  197. DeMattos RB, Bales KR, Cummins DJ, Paul SM, Holtzman DM (2002) Brain to plasma amyloid-beta efflux: A measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science 295(5563):2264–2267.

    CAS  PubMed  Google Scholar 

  198. Dodart JC, Bales KR, Gannon KS, et al. (2002) Immunization reverses memory deficits without reducing brain A beta burden in Alzheimer’s disease model. Nat Neurosci 5(5):452–457.

    CAS  PubMed  Google Scholar 

  199. Schenk D (2002) Amyloid-beta immunotherapy for Alzheimer’s disease: The end of the beginning. Nat Rev Neurosci 3(10):824–828.

    CAS  PubMed  Google Scholar 

  200. Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: A case report. Nat Med 9(4):448–452.

    CAS  PubMed  Google Scholar 

  201. Hock C, Konietzko U, Streffer JR, et al. (2003) Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 38(4):547–554.

    CAS  PubMed  Google Scholar 

  202. Boche D, Nicoll JA (2008) The role of the immune system in clearance of Abeta from the brain. Brain Pathol 18(2):267–278.

    PubMed  Google Scholar 

  203. Lichtlen P, Mohajeri MH (2008) Antibody-based approaches in Alzheimer’s research: Safety, pharmacokinetics, metabolism, and analytical tools. J Neurochem 104(4):859–874.

    CAS  PubMed  Google Scholar 

  204. Banks WA, Terrell B, Farr SA, Robinson SM, Nonaka N, Morley JE (2002) Passage of amyloid beta protein antibody across the blood-brain barrier in a mouse model of Alzheimer’s disease. Peptides 23(12):2223–2226.

    CAS  PubMed  Google Scholar 

  205. Solomon B, Koppel R, Frankel D, Hanan-Aharon E (1997) Disaggregation of Alzheimer beta-amyloid by site-directed mAb. Proc Natl Acad Sci U S A 94(8):4109–4112.

    CAS  PubMed  Google Scholar 

  206. Bard F, Cannon C, Barbour R, et al. (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6(8):916–919.

    CAS  PubMed  Google Scholar 

  207. Bard F, Barbour R, Cannon C, et al. (2003) Epitope and isotype specificities of antibodies to beta -amyloid peptide for protection against Alzheimer’s disease-like neuropathology. Proc Natl Acad Sci U S A 100(4):2023–2028.

    CAS  PubMed  Google Scholar 

  208. Bard F, Cannon C, Barbour R, et al. (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6(8):916–919.

    CAS  PubMed  Google Scholar 

  209. DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM (2001) Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 98(15):8850–8855.

    CAS  PubMed  Google Scholar 

  210. Sigurdsson EM, Knudsen E, Asuni A, et al. (2004) An attenuated immune response is sufficient to enhance cognition in an Alzheimer’s disease mouse model immunized with amyloid-beta derivatives. J Neurosci 24(28):6277–6282.

    CAS  PubMed  Google Scholar 

  211. Pfeifer M, Boncristiano S, Bondolfi L, et al. (2002) Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science 298(5597):1379.

    CAS  PubMed  Google Scholar 

  212. Meyer-Luehmann M, Stalder M, Herzig MC, et al. (2003) Extracellular amyloid formation and associated pathology in neural grafts. Nat Neurosci 6(4):370–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pirici, D., Van Broeckhoven, C., Kumar-Singh, S. (2011). Pathological Validation of Animal Models of Dementia. In: De Deyn, P., Van Dam, D. (eds) Animal Models of Dementia. Neuromethods, vol 48. Humana Press. https://doi.org/10.1007/978-1-60761-898-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-898-0_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-897-3

  • Online ISBN: 978-1-60761-898-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics