Skip to main content

APP-Based Transgenic Models: The PDAPP Model

  • Protocol
  • First Online:
  • 1426 Accesses

Part of the book series: Neuromethods ((NM,volume 48))

Abstract

The PDAPP mouse has been a very useful model for studying mechanisms underlying amyloid-β (Aβ) metabolism, aggregation, and deposition, and for aiding in the development of new diagnostic and therapeutic approaches for Alzheimer’s disease (AD). One of the initial difficulties in producing a mouse model that was useful to study AD was creating an easily manipulated small animal model that demonstrated some of the key in vivo neuropathological hallmarks of the disease. The PDAPP model was the first transgenic mouse to overexpress the human amyloid precursor protein (hAPP) that successfully recapitulated several neuropathological features characteristic of AD. These include Aβ deposition in both diffuse and neuritic plaques, cerebral amyloid angiopathy, astrocytosis, microgliosis, hippocampal atrophy, synaptic alterations, and behavioral deficits. Many of the histological, biochemical, and structural alterations present in the PDAPP mouse closely resemble the changes found in the brain of AD patients, especially the temporal and spatial-specific deposition of Aβ in the brain. The animals, however, did not develop tauopathy or significant neuronal cell death. Because of these properties, the PDAPP mouse has proven to be an attractive model to study the disease process underlying aspects of AD that are related to Aβ aggregation and its consequences. The PDAPP mouse has been extensively used to study the effect of genetic factors that modify AD, as well as Aβ-binding proteins and their effect on Aβ deposition. It has also been widely used to characterize the potential use of active and passive immunization in both the diagnosis and treatment of AD.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Quon D, Wang Y, Catalano R, Scardina JM, Murakami K, Cordell B (1991) Formation of beta-amyloid protein deposits in brains of transgenic mice. Nature 352:239–241

    Article  CAS  PubMed  Google Scholar 

  2. Sandhu FA, Salim M, Zain SB (1991) Expression of the human beta-amyloid protein of Alzheimer’s disease specifically in the brains of transgenic mice. J Biol Chem 266:21331–21334

    CAS  PubMed  Google Scholar 

  3. Kammesheidt A, Boyce FM, Spanoyannis AF et al (1992) Deposition of beta/A4 immunoreactivity and neuronal pathology in transgenic mice expressing the carboxyl-terminal fragment of the Alzheimer amyloid precursor in the brain. Proc Natl Acad Sci U S A 89:10857–10861

    Article  CAS  PubMed  Google Scholar 

  4. Lamb BT, Sisodia SS, Lawler AM et al (1993) Introduction and expression of the 400 kilobase amyloid precursor protein gene in transgenic mice [corrected]. Nat Genet 5:22–30

    Article  CAS  PubMed  Google Scholar 

  5. Pearson BE, Choi TK (1993) Expression of the human beta-amyloid precursor protein gene from a yeast artificial chromosome in transgenic mice. Proc Natl Acad Sci U S A 90:10578–10582

    Article  CAS  PubMed  Google Scholar 

  6. Higgins LS, Holtzman DM, Rabin J, Mobley WC, Cordell B (1994) Transgenic mouse brain histopathology resembles early Alzheimer’s disease. Ann Neurol 35:598–607

    Article  CAS  PubMed  Google Scholar 

  7. Mucke L, Masliah E, Johnson WB et al (1994) Synaptotrophic effects of human amyloid beta protein precursors in the cortex of transgenic mice. Brain Res 666:151–167

    Article  CAS  PubMed  Google Scholar 

  8. Games D, Adams D, Alessandrini R et al (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373:523–527

    Article  CAS  PubMed  Google Scholar 

  9. Murrell J, Farlow M, Ghetti B, Benson MD (1991) A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science 254:97–99

    Article  CAS  PubMed  Google Scholar 

  10. Sasahara M, Fries JW, Raines EW et al (1991) PDGF B-chain in neurons of the central nervous system, posterior pituitary, and in a transgenic model. Cell 64:217–227

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki N, Cheung TT, Cai XD et al (1994) An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science 264:1336–1340

    Article  CAS  PubMed  Google Scholar 

  12. Rockenstein EM, McConlogue L, Tan H, Power M, Masliah E, Mucke L (1995) Levels and alternative splicing of amyloid beta protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer’s disease. J Biol Chem 270:28257–28267

    Article  CAS  PubMed  Google Scholar 

  13. DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM (2001) Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 98:8850–8855

    Article  CAS  PubMed  Google Scholar 

  14. Johnson-Wood K, Lee M, Motter R et al (1997) Amyloid precursor protein processing and A beta42 deposition in a transgenic mouse model of Alzheimer disease. Proc Natl Acad Sci U S A 94:1550–1555

    Article  CAS  PubMed  Google Scholar 

  15. Cirrito JR, May PC, O’Dell MA et al (2003) In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-beta metabolism and half-life. J Neurosci 23:8844–8853

    CAS  PubMed  Google Scholar 

  16. Irizarry MC, Soriano F, McNamara M et al (1997) Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J Neurosci 17:7053–7059

    CAS  PubMed  Google Scholar 

  17. Su Y, Ni B (1998) Selective deposition of amyloid-beta protein in the entorhinal-dentate projection of a transgenic mouse model of Alzheimer’s disease. J Neurosci Res 53:177–186

    Article  CAS  PubMed  Google Scholar 

  18. DeMattos RB, Bales KR, Parsadanian M et al (2002) Plaque-associated disruption of CSF and plasma amyloid-beta (Abeta) equilibrium in a mouse model of Alzheimer’s disease. J Neurochem 81:229–236

    Article  CAS  PubMed  Google Scholar 

  19. Fryer JD, Taylor JW, DeMattos RB et al (2003) Apolipoprotein E markedly facilitates age-dependent cerebral amyloid angiopathy and spontaneous hemorrhage in amyloid precursor protein transgenic mice. J Neurosci 23:7889–7896

    CAS  PubMed  Google Scholar 

  20. Racke MM, Boone LI, Hepburn DL et al (2005) Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid beta. J Neurosci 25:629–636

    Article  CAS  PubMed  Google Scholar 

  21. Dodart JC, Mathis C, Saura J, Bales KR, Paul SM, Ungerer A (2000) Neuroanatomical abnormalities in behaviorally characterized APP(V717F) transgenic mice. Neurobiol Dis 7:71–85

    Article  CAS  PubMed  Google Scholar 

  22. Weiner HL, Lemere CA, Maron R et al (2000) Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer’s disease. Ann Neurol 48:567–579

    Article  CAS  PubMed  Google Scholar 

  23. Fishman CE, Cummins DJ, Bales KR et al (2001) Statistical aspects of quantitative image analysis of beta-amyloid in the APP(V717F) transgenic mouse model of Alzheimer’s disease. J Neurosci Methods 108:145–152

    Article  CAS  PubMed  Google Scholar 

  24. Reilly JF, Games D, Rydel RE et al (2003) Amyloid deposition in the hippocampus and entorhinal cortex: quantitative analysis of a transgenic mouse model. Proc Natl Acad Sci U S A 100:4837–4842

    Article  CAS  PubMed  Google Scholar 

  25. Bussiere T, Bard F, Barbour R et al (2004) Morphological characterization of Thioflavin-S-positive amyloid plaques in transgenic Alzheimer mice and effect of passive Abeta immunotherapy on their clearance. Am J Pathol 165:987–995

    Article  CAS  PubMed  Google Scholar 

  26. Masliah E, Sisk A, Mallory M, Mucke L, Schenk D, Games D (1996) Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein and Alzheimer’s disease. J Neurosci 16:5795–5811

    CAS  PubMed  Google Scholar 

  27. Bacskai BJ, Kajdasz ST, Christie RH et al (2001) Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat Med 7:369–372

    Article  CAS  PubMed  Google Scholar 

  28. Brendza RP, Bacskai BJ, Cirrito JR et al (2005) Anti-Abeta antibody treatment promotes the rapid recovery of amyloid-associated neuritic dystrophy in PDAPP transgenic mice. J Clin Invest 115:428–433

    CAS  PubMed  Google Scholar 

  29. Murphy GM Jr., Zhao F, Yang L, Cordell B (2000) Expression of macrophage colony-stimulating factor receptor is increased in the AbetaPP(V717F) transgenic mouse model of Alzheimer’s disease. Am J Pathol 157:895–904

    Article  CAS  PubMed  Google Scholar 

  30. Masliah E, Sisk A, Mallory M, Games D (2001) Neurofibrillary pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. J Neuropathol Exp Neurol 60:357–368

    CAS  PubMed  Google Scholar 

  31. Lewis J, Dickson DW, Lin WL et al (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491

    Article  CAS  PubMed  Google Scholar 

  32. Weiss C, Venkatasubramanian PN, Aguado AS et al (2002) Impaired eyeblink conditioning and decreased hippocampal volume in PDAPP V717F mice. Neurobiol Dis 11:425–433

    Article  CAS  PubMed  Google Scholar 

  33. Redwine JM, Kosofsky B, Jacobs RE et al (2003) Dentate gyrus volume is reduced before onset of plaque formation in PDAPP mice: a magnetic resonance microscopy and stereologic analysis. Proc Natl Acad Sci U S A 100:1381–1386

    Article  CAS  PubMed  Google Scholar 

  34. German DC, Yazdani U, Speciale SG, Pasbakhsh P, Games D, Liang CL (2003) Cholinergic neuropathology in a mouse model of Alzheimer’s disease. J Comp Neurol 462:371–381

    Article  PubMed  Google Scholar 

  35. Dodart JC, Meziane H, Mathis C, Bales KR, Paul SM, Ungerer A (1999) Behavioral disturbances in transgenic mice overexpressing the V717F beta-amyloid precursor protein. Behav Neurosci 113:982–990

    Article  CAS  PubMed  Google Scholar 

  36. Chen G, Chen KS, Knox J et al (2000) A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer’s ­disease. Nature 408:975–979

    Article  CAS  PubMed  Google Scholar 

  37. Hartman RE, Izumi Y, Bales KR, Paul SM, Wozniak DF, Holtzman DM (2005) Treatment with an amyloid-beta antibody ameliorates plaque load, learning deficits, and hippocampal long-term potentiation in a mouse model of Alzheimer’s disease. J Neurosci 25:6213–6220

    Article  CAS  PubMed  Google Scholar 

  38. Gerlai R, Fitch T, Bales KR, Gitter BD (2002) Behavioral impairment of APP(V717F) mice in fear conditioning: is it only cognition? Behav Brain Res 136:503–509

    Article  PubMed  Google Scholar 

  39. Huitron-Resendiz S, Sanchez-Alavez M, Gallegos R et al (2002) Age-independent and age-related deficits in visuospatial learning, sleep-wake states, thermoregulation and motor activity in PDAPP mice. Brain Res 928:126–137

    Article  CAS  PubMed  Google Scholar 

  40. Larson J, Lynch G, Games D, Seubert P (1999) Alterations in synaptic transmission and long-term potentiation in hippocampal slices from young and aged PDAPP mice. Brain Res 840:23–35

    Article  CAS  PubMed  Google Scholar 

  41. Giacchino J, Criado JR, Games D, Henriksen S (2000) In vivo synaptic transmission in young and aged amyloid precursor protein transgenic mice. Brain Res 876:185–190

    Article  CAS  PubMed  Google Scholar 

  42. Sanchez-Alavez M, Gallegos RA, Kalafut MA, Games D, Henriksen SJ, Criado JR (2002) Loss of medial septal modulation of dentate gyrus physiology in young mice overexpressing human beta-amyloid precursor protein. Neurosci Lett 330:45–48

    Article  CAS  PubMed  Google Scholar 

  43. Bales KR, Tzavara ET, Wu S et al (2006) Cholinergic dysfunction in a mouse model of Alzheimer disease is reversed by an anti-A beta antibody. J Clin Invest 116:825–832

    Article  CAS  PubMed  Google Scholar 

  44. Corder EH, Saunders AM, Strittmatter WJ et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    Article  CAS  PubMed  Google Scholar 

  45. Strittmatter WJ, Saunders AM, Schmechel D et al (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 90:1977–1981

    Article  CAS  PubMed  Google Scholar 

  46. Bales KR, Verina T, Dodel RC et al (1997) Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat Genet 17:263–264

    Article  CAS  PubMed  Google Scholar 

  47. Bales KR, Verina T, Cummins DJ et al (1999) Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 96:15233–15238

    Article  CAS  PubMed  Google Scholar 

  48. Holtzman DM, Bales KR, Wu S et al (1999) Expression of human apolipoprotein E reduces amyloid-beta deposition in a mouse model of Alzheimer’s disease. J Clin Invest 103:R15–R21

    Article  CAS  PubMed  Google Scholar 

  49. Holtzman DM, Bales KR, Tenkova T et al (2000) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 97:2892–2897

    Article  CAS  PubMed  Google Scholar 

  50. DeMattos RB, O’Dell M A, Parsadanian M et al (2002) Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 99:10843–10848

    Article  CAS  PubMed  Google Scholar 

  51. DeMattos RB, Cirrito JR, Parsadanian M et al (2004) ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo. Neuron 41:193–202

    Article  CAS  PubMed  Google Scholar 

  52. Nilsson LN, Bales KR, DiCarlo G et al. (2001) Alpha-1-antichymotrypsin promotes beta-sheet amyloid plaque deposition in a transgenic mouse model of Alzheimer’s disease. J Neurosci 21:1444–1451

    CAS  PubMed  Google Scholar 

  53. Fagan AM, Watson M, Parsadanian M, Bales KR, Paul SM, Holtzman DM (2002) Human and murine ApoE markedly alters A beta metabolism before and after plaque formation in a mouse model of Alzheimer’s disease. Neurobiol Dis 9:305–318

    Article  CAS  PubMed  Google Scholar 

  54. Schenk D, Barbour R, Dunn W et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177

    Article  CAS  PubMed  Google Scholar 

  55. Bard F, Cannon C, Barbour R et al (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6:916–919

    Article  CAS  PubMed  Google Scholar 

  56. Dodart JC, Bales KR, Gannon KS et al (2002) Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat Neurosci 5:452–457

    CAS  PubMed  Google Scholar 

  57. DeMattos RB, Bales KR, Cummins DJ, Paul SM, Holtzman DM (2002) Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science 295:2264–2267

    Article  CAS  PubMed  Google Scholar 

  58. Bacskai BJ, Kajdasz ST, McLellan ME et al (2002) Non-Fc-mediated mechanisms are involved in clearance of amyloid-beta in vivo by immunotherapy. J Neurosci 22:7873–7878

    CAS  PubMed  Google Scholar 

  59. Dovey HF, John V, Anderson JP et al (2001) Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem 76:173–181

    Article  CAS  PubMed  Google Scholar 

  60. Brendza RP, O’Brien C, Simmons K et al (2003) PDAPP; YFP double transgenic mice: a tool to study amyloid-beta associated changes in axonal, dendritic, and synaptic structures. J Comp Neurol 456:375–383

    Article  CAS  PubMed  Google Scholar 

  61. Brendza RP, Bales KR, Paul SM, Holtzman DM (2002) Role of apoE/Abeta interactions in Alzheimer’s disease: insights from transgenic mouse models. Mol Psychiatry 7:132–135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants AG13956 and P01-NS32636.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Basak, J.M., Holtzman, D.M. (2011). APP-Based Transgenic Models: The PDAPP Model. In: De Deyn, P., Van Dam, D. (eds) Animal Models of Dementia. Neuromethods, vol 48. Humana Press. https://doi.org/10.1007/978-1-60761-898-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-898-0_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-897-3

  • Online ISBN: 978-1-60761-898-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics