Skip to main content

Aβ Infusion and Related Models of Alzheimer Dementia

  • Protocol
  • First Online:
Animal Models of Dementia

Part of the book series: Neuromethods ((NM,volume 48))

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by a decline in cognitive function and the presence of neuropathological hallmarks, including the accumulation of extracellular Aβ. Aspects of AD can be modeled in rodents by direct intracerebral injection of Aβ. This causes learning and memory deficits in treated animals, with the severity of the deficits observed dependent on the species of Aβ infused and the time interval between Aβ administration and behavioral testing. Variation in the reported behavioral and neuropathological consequences of Aβ infusion can also be attributed to the aggregation state and type of Aβ preparation used (synthetic or recombinant), the duration of the infusion (acute or chronic), peptide concentration, and even the solvent used to dilute the peptide. More recently, the use of viral vector gene transfer technology has allowed the development of “somatic transgenic” models, whereby genes putatively involved in AD pathogenesis can be selectively overexpressed in specific brain regions involved in AD. Although this promising strategy has been shown to result in the development of both cognitive deficits and Aβ deposits in treated animals, these genetic models require further characterization to show reproducible development of behavioral deficits and neuropathology prior to their widespread adoption as a reliable and useful model of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dodart JC, May P (2005) Overview on rodent models of Alzheimer’s disease. Curr Protoc Neurosci 33:9.22.1–9.22.16

    Google Scholar 

  2. Albert MS (1996) Cognitive and neurobiologic markers of early Alzheimer ­disease. Proc Natl Acad Sci U S A 93: 13547–13551

    CAS  PubMed  Google Scholar 

  3. Almkvist O (1996) Neuropsychological features of early Alzheimer’s disease: preclinical and clinical stages. Acta Neurol Scand Suppl 165:63–71

    CAS  PubMed  Google Scholar 

  4. Fleischman DA, Gabrieli J (1999) Long-term memory in Alzheimer’s disease. Curr Opin Neurobiol 9:240–144

    CAS  PubMed  Google Scholar 

  5. Ferris SH, Kluger A (1997) Assessing cognition in Alzheimer disease research. Alzheimer Dis Assoc Disord 11(Suppl 6):45–49

    PubMed  Google Scholar 

  6. Perry RJ, Hodges JR (1999) Attention and executive deficits in Alzheimer’s disease. A critical review. Brain 122:383–404

    PubMed  Google Scholar 

  7. Collie A, Maruff P (2000) The neuropsychology of preclinical Alzheimer’s disease and mild cognitive impairment. Neurosci Biobehav Rev 24:365–374

    CAS  PubMed  Google Scholar 

  8. Cummings JL (2000) Cognitive and behavioral heterogeneity in Alzheimer’s disease: seeking the neurobiological basis. Neurobiol Aging 21:845–861

    CAS  PubMed  Google Scholar 

  9. Chung JA, Cummings JL (2000) Neurobe­havioral and neuropsychiatric symptoms in Alzheimer’s disease: charac­teristics and treatment. Neurol Clin 18:829–846

    CAS  PubMed  Google Scholar 

  10. Van Dam D, De Deyn PP (2006) Drug ­discovery in dementia: the role of rodent models. Nat Rev Drug Discov 5:956–970

    CAS  PubMed  Google Scholar 

  11. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    CAS  PubMed  Google Scholar 

  12. Glenner GG, Wong CW (1984) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122:1131–115

    CAS  PubMed  Google Scholar 

  13. Golde TE, Eckman CB, Younkin SG (2000) Biochemical detection of Abeta isoforms: implications for pathogenesis, diagnosis, and treatment of Alzheimer’s disease. Biochim Biophys Acta 1502:172–187

    CAS  PubMed  Google Scholar 

  14. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 82:4245–4249

    CAS  PubMed  Google Scholar 

  15. Findeis MA (2007) The role of amyloid beta peptide 42 in Alzheimer’s disease. Pharmacol Ther 116:266–286

    CAS  PubMed  Google Scholar 

  16. Younkin SG (1998) The role of A beta 42 in Alzheimer’s disease. J Physiol Paris 92:289–292

    CAS  PubMed  Google Scholar 

  17. Selkoe DJ (2001) Clearing the brain’s ­amyloid cobwebs. Neuron 32:177–180

    CAS  PubMed  Google Scholar 

  18. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    CAS  PubMed  Google Scholar 

  19. Chartier-Harlin MC, Crawford F, Houlden H et al (1991) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353:844–846

    CAS  PubMed  Google Scholar 

  20. Citron M, Eckman CB, Diehl TS et al (1998) Additive effects of PS1 and APP mutations on secretion of the 42-residue amyloid beta-­protein. Neurobiol Dis 5:107–116

    CAS  PubMed  Google Scholar 

  21. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    CAS  PubMed  Google Scholar 

  22. Mullan M, Crawford F, Axelman K et al (1992) A pathogenic mutation for proba le Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet 1:345–347

    CAS  PubMed  Google Scholar 

  23. McGowan E, Pickford F, Kim J et al (2005) Abeta42 is essential for parenchymal and ­vascular amyloid deposition in mice. Neuron 47:191–199

    CAS  PubMed  Google Scholar 

  24. Selkoe DJ (2000) Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann N Y Acad Sci 924:17–25

    CAS  PubMed  Google Scholar 

  25. Hartley DM, Walsh DM, Ye CP et al (1999) Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 19:8876–8884

    CAS  PubMed  Google Scholar 

  26. Lambert MP, Barlow AK, Chromy BA et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95:6448–6453

    CAS  PubMed  Google Scholar 

  27. Lue LF, Kuo YM, Roher AE et al (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155:853–862

    CAS  PubMed  Google Scholar 

  28. Selkoe DJ (2002) Alzheimer’s disease is a ­synaptic failure. Science 298:789–791

    CAS  PubMed  Google Scholar 

  29. Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192:106–113

    CAS  PubMed  Google Scholar 

  30. Lacor PN, Buniel MC, Chang L et al (2004) Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci 24:10191–10200

    CAS  PubMed  Google Scholar 

  31. Walsh DM, Selkoe DJ (2004) Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett 11:213–228

    CAS  PubMed  Google Scholar 

  32. Walsh DM, Klyubin I, Fadeeva JV et al (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    CAS  PubMed  Google Scholar 

  33. Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44:181–193

    CAS  PubMed  Google Scholar 

  34. Stephan A, Phillips AG (2005) A case for a non-transgenic animal model of Alzheimer’s disease. Genes Brain Behav 4:157–172

    CAS  PubMed  Google Scholar 

  35. Harkany T, O’Mahony S, Kelly JP et al (1998) Beta-amyloid (Phe(SO3H)24)25–35 in rat nucleus basalis induces behavioral dysfunctions, impairs learning and memory and disrupts cortical cholinergic innervation. Behav Brain Res 90:133–145

    CAS  PubMed  Google Scholar 

  36. Yamada M, Chiba T, Sasabe J et al (2005) Implanted cannula-mediated repetitive administration of Abeta 25–35 into the mouse cerebral ventricle effectively impairs spatial working memory. Behav Brain Res 164:139–146

    CAS  PubMed  Google Scholar 

  37. Nakamura S, Murayama N, Noshita T, Annoura H, Ohno T (2001) Progressive brain dysfunction following intracerebroventricular infusion of beta(1–42)-amyloid ­peptide. Brain Res 912:128–136

    CAS  PubMed  Google Scholar 

  38. Olariu A, Yamada K, Mamiya T, Hefco V, Nabeshima T (2002) Memory impairment induced by chronic intracerebroventricular infusion of beta-amyloid (1–40) involves downregulation of protein kinase C. Brain Res 957:278–286

    CAS  PubMed  Google Scholar 

  39. Nag S, Yee BK, Tang F (1999) Reduction in somatostatin and substance P levels and ­choline acetyltransferase activity in the cortex and hippocampus of the rat after chronic intracerebroventricular infusion of beta-­amyloid (1–40). Brain Res Bull 50:251–262

    CAS  PubMed  Google Scholar 

  40. McDonald MP, Dahl EE, Overmier JB, Mantyh P, Cleary J (1994) Effects of an exogenous beta-amyloid peptide on ­retention for spatial learning. Behav Neural Biol 62:60–67

    CAS  PubMed  Google Scholar 

  41. Cleary J, Hittner JM, Semotuk M, Mantyh P, O’Hare E (1995) Beta-amyloid(1–40) effects on behavior and memory. Brain Res 682:69–74

    CAS  PubMed  Google Scholar 

  42. Nabeshima T, Nitta A (1994) Memory imp­airment and neuronal dysfunction induced by beta-amyloid protein in rats. Tohoku J Exp Med 174:241–249

    CAS  PubMed  Google Scholar 

  43. Lee CL, Kuo TF, Wang JJ, Pan TM (2007) Red mold rice ameliorates impairment of memory and learning ability in intracerebroventricular amyloid beta-infused rat by repressing amyloid beta accumulation. J Neurosci Res 85:3171–3182

    CAS  PubMed  Google Scholar 

  44. Tang J, Xu H, Fan X et al (2008) Embryonic stem cell-derived neural precursor cells improve memory dysfunction in Abeta (1–40) injured rats. Neurosci Res 62:86–96

    CAS  PubMed  Google Scholar 

  45. Yamaguchi Y, Miyashita H, Tsunekawa H et al (2006) Effects of a novel cognitive enhancer, spiro [imidazo-[1,2-a]pyridine-3,2-indan]-2(3H)-one (ZSET1446), on learning impairments induced by amyloid-beta1–40 in the rat. J Pharmacol Exp Ther 317:1079–1087

    CAS  PubMed  Google Scholar 

  46. Yamada K, Tanaka T, Senzaki K, Kameyama T, Nabeshima T (1998) Propentofylline improves learning and memory deficits in rats induced by beta-amyloid protein-(1–40). Eur J Pharmacol 349:15–22

    CAS  PubMed  Google Scholar 

  47. Tanaka T, Yamada K, Senzaki K et al (1998) NC-1900, an active fragment analog of arginine vasopressin, improves learning and memory deficits induced by beta-amyloid protein in rats. Eur J Pharmacol 352:135–142

    CAS  PubMed  Google Scholar 

  48. Yamada K, Tanaka T, Mamiya T, Shiotani T, Kameyama T, Nabeshima T (1999) ­Imp­rovement by nefiracetam of beta-­amyloid-(1–42)-induced learning and memory impairments in rats. Br J Pharmacol 126:235–244

    CAS  PubMed  Google Scholar 

  49. Yamada K, Tanaka T, Han D, Senzaki K, Kameyama T, Nabeshima T (1999) Protective effects of idebenone and alpha-tocopherol on beta-amyloid-(1–42)-induced learning and memory deficits in rats: implication of oxidative stress in beta-amyloid-induced neurotoxicity in vivo. Eur J Neurosci 11:83–90

    CAS  PubMed  Google Scholar 

  50. Mazzola C, Micale V, Drago F (2003) Amnesia induced by beta-amyloid fragments is counteracted by cannabinoid CB1 receptor blockade. Eur J Pharmacol 477:219–225

    CAS  PubMed  Google Scholar 

  51. Jhoo JH, Kim HC, Nabeshima T et al (2004) Beta-amyloid (1–42)-induced learning and memory deficits in mice: involvement of oxidative burdens in the hippocampus and cerebral cortex. Behav Brain Res 155:185–196

    CAS  PubMed  Google Scholar 

  52. Liu RY, Gu R, Qi XL et al (2008) Decreased nicotinic receptors and cognitive deficit in rats intracerebroventricularly injected with beta-amyloid peptide(1–42) and fed a high-cholesterol diet. J Neurosci Res 86:183–193

    CAS  PubMed  Google Scholar 

  53. Flood JF, Morley JE, Roberts E (1991) Amnestic effects in mice of four synthetic peptides homologous to amyloid beta protein from patients with Alzheimer disease. Proc Natl Acad Sci U S A 88:3363–3366

    CAS  PubMed  Google Scholar 

  54. Olariu A, Tran MH, Yamada K, Mizuno M, Hefco V, Nabeshima T (2001) Memory ­deficits and increased emotionality induced by beta-amyloid (25–35) are correlated with the reduced acetylcholine release and altered phorbol dibutyrate binding in the hippocampus. J Neural Transm 108:1065–1079

    CAS  PubMed  Google Scholar 

  55. Stepanichev MY, Moiseeva YV, Lazareva NA, Onufriev MV, Gulyaeva NV (2003) Single intracerebroventricular administration of amyloid-beta (25–35) peptide induces impairment in short-term rather than long-term memory in rats. Brain Res Bull 61:197–205

    CAS  PubMed  Google Scholar 

  56. Giovannelli L, Scali C, Faussone-Pellegrini MS, Pepeu G, Casamenti F (1998) Long-term changes in the aggregation state and toxic effects of beta-amyloid injected into the rat brain. Neuroscience 87:349–357

    CAS  PubMed  Google Scholar 

  57. Sipos E, Kurunczi A, Kasza A et al (2007) Beta-amyloid pathology in the entorhinal cortex of rats induces memory deficits: implications for Alzheimer’s disease. Neuroscience 147:28–36

    CAS  PubMed  Google Scholar 

  58. Frautschy SA, Yang F, Calderon L, Cole GM (1996) Rodent models of Alzheimer’s ­disease: rat A beta infusion approaches to amyloid deposits. Neurobiol Aging 17:311–321

    CAS  PubMed  Google Scholar 

  59. Frautschy SA, Horn DL, Sigel JJ et al (1998) Protease inhibitor coinfusion with amyloid beta-protein results in enhanced deposition and toxicity in rat brain. J Neurosci 18:8311–8321

    CAS  PubMed  Google Scholar 

  60. Malm T, Ort M, Tahtivaara L et al (2006) Beta-Amyloid infusion results in delayed and age-dependent learning deficits without role of inflammation or beta-amyloid deposits. Proc Natl Acad Sci U S A 103:8852–8857

    CAS  PubMed  Google Scholar 

  61. Stephan A, Laroche S, Davis S (2001) Generation of aggregated beta-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits. J Neurosci 21:5703–5714

    CAS  PubMed  Google Scholar 

  62. Begum AN, Yang F, Teng E et al (2008) Use of copper and insulin-resistance to accelerate cognitive deficits and synaptic protein loss in a rat Abeta-infusion Alzheimer’s disease model. J Alzheimers Dis 15:625–640

    CAS  PubMed  Google Scholar 

  63. Frautschy SA, Baird A, Cole GM (1991) Effects of injected Alzheimer beta-amyloid cores in rat brain. Proc Natl Acad Sci U S A 88:8362–8366

    CAS  PubMed  Google Scholar 

  64. Frautschy SA, Cole GM, Baird A (1992) Phagocytosis and deposition of vascular beta-amyloid in rat brains injected with Alzheimer beta-amyloid. Am J Pathol 140:1389–1399

    CAS  PubMed  Google Scholar 

  65. Weldon DT, Rogers SD, Ghilardi JR et al (1998) Fibrillar beta-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select ­population of neurons in the rat CNS in vivo. J Neurosci 18:2161–2173

    CAS  PubMed  Google Scholar 

  66. Klein AM, Kowall NW, Ferrante RJ (1999) Neurotoxicity and oxidative damage of beta amyloid 1–42 versus beta amyloid 1–40 in the mouse cerebral cortex. Ann N Y Acad Sci 893:314–320

    CAS  PubMed  Google Scholar 

  67. Scali C, Prosperi C, Giovannelli L, Bianchi L, Pepeu G, Casamenti F (1999) Beta(1–40) amyloid peptide injection into the nucleus basalis of rats induces microglia reaction and enhances cortical gamma-aminobutyric acid release in vivo. Brain Res 831:319–321

    CAS  PubMed  Google Scholar 

  68. Emre M, Geula C, Ransil BJ, Mesulam MM (1992) The acute neurotoxicity and effects upon cholinergic axons of intracerebrally injected beta-amyloid in the rat brain. Neurobiol Aging 13:553–559

    CAS  PubMed  Google Scholar 

  69. Kowall NW, Beal MF, Busciglio J, Duffy LK, Yankner BA (1991) An in vivo model for the neurodegenerative effects of beta amyloid and protection by substance P. Proc Natl Acad Sci U S A 88:7247–7251

    CAS  PubMed  Google Scholar 

  70. Waite J, Cole GM, Frautschy SA, Connor DJ, Thal LJ (1992) Solvent effects on beta protein toxicity in vivo. Neurobiol Aging 13:595–599

    CAS  PubMed  Google Scholar 

  71. Sigurdsson EM, Lee JM, Dong XW, Hejna MJ, Lorens SA (1997) Bilateral injections of amyloid-beta 25–35 into the amygdala of young Fischer rats: behavioral, ­neurochemical, and time dependent histopathological effects. Neurobiol Aging 18:591–608

    CAS  PubMed  Google Scholar 

  72. Harkany T, Abraham I, Timmerman W et al (2000) Beta-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur J Neurosci 12:2735–2745

    CAS  PubMed  Google Scholar 

  73. Nag S, Yee BK, Tang F (1999) Chronic intracerebroventricular infusion of beta-amyloid (1–40) results in a selective loss of neuropeptides in addition to a reduction in choline acetyltransferase activity in the cortical mantle and hippocampus in the rat. Ann N Y Acad Sci 897:420–422

    CAS  PubMed  Google Scholar 

  74. Lesne S, Koh MT, Kotilinek L et al (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440: 352–357

    CAS  PubMed  Google Scholar 

  75. Howlett DR, Jennings KH, Lee DC et al (1995) Aggregation state and neurotoxic properties of Alzheimer beta-amyloid peptide. Neurodegeneration 4:23–32

    CAS  PubMed  Google Scholar 

  76. Iversen LL, Mortishire-Smith RJ, Pollack SJ, Shearman MS (1995) The toxicity in vitro of beta-amyloid protein. Biochem J 311:1–16

    CAS  PubMed  Google Scholar 

  77. Fezoui Y, Hartley DM, Harper JD et al (2000) An improved method of preparing the amyloid beta-protein for fibrillogenesis and neurotoxicity experiments. Amyloid 7:166–178

    CAS  PubMed  Google Scholar 

  78. Walsh DM, Hartley DM, Selkoe DJ (2003) The many faces of Aß: structures and activity. Curr Med Chem Immun Endocr Metab Agents 3:277–291

    CAS  Google Scholar 

  79. Snyder EM, Nong Y, Almeida CG et al (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8:1051–1058

    CAS  PubMed  Google Scholar 

  80. Cleary JP, Walsh DM, Hofmeister JJ et al (2005) Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci 8:79–84

    CAS  PubMed  Google Scholar 

  81. Tickler AK, Clippingdale AB, Wade JD (2004) Amyloid-beta as a “difficult sequence” in solid phase peptide synthesis. Protein Pept Lett 11:377–384

    CAS  PubMed  Google Scholar 

  82. May PC, Gitter BD, Waters DC et al (1992) Beta-Amyloid peptide in vitro toxicity: lot-to-lot variability. Neurobiol Aging 13:605–607

    CAS  PubMed  Google Scholar 

  83. Brining SK (1997) Predicting the in vitro ­toxicity of synthetic beta-amyloid (1–40). Neurobiol Aging 18:581–589

    CAS  PubMed  Google Scholar 

  84. Dahlgren KN, Manelli AM, Stine WB Jr, Baker LK, Krafft GA, LaDu MJ (2002) Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem 277:32046–32053

    CAS  PubMed  Google Scholar 

  85. Harper JD, Lansbury PT Jr (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent ­solubility of amyloid proteins. Annu Rev Biochem 66:385–407

    CAS  PubMed  Google Scholar 

  86. McLarnon JG, Ryu JK (2008) Relevance of abeta1–42 intrahippocampal injection as an animal model of inflamed Alzheimer’s disease brain. Curr Alzheimer Res 5:475–480

    CAS  PubMed  Google Scholar 

  87. Hsiao K, Chapman P, Nilsen S et al (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102

    CAS  PubMed  Google Scholar 

  88. Borchelt DR, Ratovitski T, van Lare J et al (1997) Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19:939–945

    CAS  PubMed  Google Scholar 

  89. Holcomb L, Gordon MN, McGowan E et al (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 4:97–100

    CAS  PubMed  Google Scholar 

  90. Gordon MN, Holcomb LA, Jantzen PT et al (2002) Time course of the development of Alzheimer-like pathology in the doubly transgenic PS1+APP mouse. Exp Neurol 173:183–195

    CAS  PubMed  Google Scholar 

  91. Furukawa K, Sopher BL, Rydel RE et al (1996) Increased activity-regulating and neuroprotective efficacy of alpha-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain. J Neurochem 67:1882–1896

    CAS  PubMed  Google Scholar 

  92. Barger SW, Mattson MP (1996) Induction of neuroprotective kappa B-dependent transcription by secreted forms of the Alzheimer’s beta-amyloid precursor. Brain Res Mol Brain Res 40:116–126

    CAS  PubMed  Google Scholar 

  93. Lu DC, Rabizadeh S, Chandra S et al (2000) A second cytotoxic proteolytic peptide derived from amyloid beta-protein precursor. Nat Med 6:397–404

    CAS  PubMed  Google Scholar 

  94. LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3:862–872

    CAS  PubMed  Google Scholar 

  95. Dodart JC, Mathis C, Ungerer A (2000) The beta-amyloid precursor protein and its derivatives: from biology to learning and memory processes. Rev Neurosci 11:75–93

    CAS  PubMed  Google Scholar 

  96. Turner PR, O,Connor K, Tate WP, Abraham WC (2003) Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 70:1–32

    CAS  Google Scholar 

  97. Bour A, Little S, Dodart JC, Kelche C, Mathis C (2004) A secreted form of the beta-amyloid precursor protein (sAPP695) improves spatial recognition memory in OF1 mice. Neurobiol Learn Mem 81:27–38

    CAS  PubMed  Google Scholar 

  98. Galvan V, Gorostiza OF, Banwait S et al (2006) Reversal of Alzheimer’s-like pathology and behavior in human APP transgenic mice by mutation of Asp664. Proc Natl Acad Sci U S A 103:7130–7135

    CAS  PubMed  Google Scholar 

  99. Ulusoy A, Bjorklund T, Hermening S, Kirik D (2008) In vivo gene delivery for development of mammalian models for Parkinson’s disease. Exp Neurol 209:89–100

    CAS  PubMed  Google Scholar 

  100. Holcomb LA, Gordon MN, Jantzen P, Hsiao K, Duff K, Morgan D (1999) Behavioral changes in transgenic mice expressing both amyloid precursor protein and presenilin-1 mutations: lack of association with amyloid deposits. Behav Genet 29:177–185

    CAS  PubMed  Google Scholar 

  101. Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24:1063–1070

    CAS  PubMed  Google Scholar 

  102. During MJ, Young D, Baer K, Lawlor P, Klugmann M (2003) Development and ­optimization of adeno-associated virus vector transfer into the central nervous system. Methods Mol Med 76:221–236

    CAS  PubMed  Google Scholar 

  103. Tenenbaum L, Chtarto A, Lehtonen E, Velu T, Brotchi J, Levivier M (2004) Recombinant AAV-mediated gene delivery to the central nervous system. J Gene Med 6:Suppl 1: S212– S222

    Google Scholar 

  104. McCown TJ (2005) Adeno-associated virus (AAV) vectors in the CNS. Curr Gene Ther 5:333–338

    CAS  PubMed  Google Scholar 

  105. Wang C, Wang CM, Clark KR, Sferra TJ (2003) Recombinant AAV serotype 1 transduction efficiency and tropism in the murine brain. Gene Ther 10:1528–1534

    CAS  PubMed  Google Scholar 

  106. Mandel RJ, Burger C (2004) Clinical trials in neurological disorders using AAV vectors: promises and challenges. Curr Opin Mol Ther 6:482–490

    CAS  PubMed  Google Scholar 

  107. Bankiewicz KS, Forsayeth J, Eberling JL et al (2006) Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther 14:564–570

    CAS  PubMed  Google Scholar 

  108. Kaplitt MG, Feigin A, Tang C et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open labl, phase I trial. Lancet 369:2097–2105

    CAS  PubMed  Google Scholar 

  109. Giacobini E, Becker RE (2007) One ­hundred years after the discovery of Alzheimer’s disease. A turning point for therapy? J Alzheimers Dis 12:37–52

    CAS  PubMed  Google Scholar 

  110. During MJ, Cao L, Zuzga DS et al (2003) Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med 9:1173–1179

    CAS  PubMed  Google Scholar 

  111. Mouravlev A, Dunning J, Young D, During MJ (2006) Somatic gene transfer of cAMP response element-binding protein attenuates memory impairment in aging rats. Proc Natl Acad Sci U S A 103:4705–4710

    CAS  PubMed  Google Scholar 

  112. Szumlinski KK, Lominac KD, Oleson EB et al (2005) Homer2 is necessary for EtOH-induced neuroplasticity. J Neurosci 25:7054–7061

    CAS  PubMed  Google Scholar 

  113. Kirik D, Rosenblad C, Burger C et al (2002) Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci 22:2780–2791

    CAS  PubMed  Google Scholar 

  114. Lo Bianco C, Ridet JL, Schneider BL, Deglon N, Aebischer P (2002) Alpha -Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci U S A 99:10813–10818

    CAS  PubMed  Google Scholar 

  115. Senut MC, Suhr ST, Kaspar B, Gage FH (2000) Intraneuronal aggregate formation and cell death after viral expression of expanded polyglutamine tracts in the adult rat brain. J Neurosci 20:219–229

    CAS  PubMed  Google Scholar 

  116. de Almeida LP, Ross CA, Zala D, Aebischer P, Deglon N (2002) Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats induces a selective neuropathology modulated by polyglutamine repeat size, huntingtin expression levels, and protein length. J Neurosci 22(9):3473–3483

    PubMed  Google Scholar 

  117. DiFiglia M, Sena-Esteves M, Chase K et al (2007) Therapeutic silencing of mutant ­huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral ­deficits. Proc Natl Acad Sci U S A 104:17204–17209

    CAS  PubMed  Google Scholar 

  118. Kirik D, Annett LE, Burger C, Muzyczka N, Mandel RJ, Bjorklund A (2003) Nigrostriatal alpha-synucleinopathy induced by viral ­vector-mediated overexpression of human alpha-synuclein: a new primate model of Parkinson’s disease. Proc Natl Acad Sci U S A 100:2884–2889

    CAS  PubMed  Google Scholar 

  119. Hong CS, Goins WF, Goss JR, Burton EA, Glorioso JC (2006) Herpes simplex virus RNAi and neprilysin gene transfer vectors reduce accumulation of Alzheimer’s disease-related amyloid-beta peptide in vivo. Gene Ther 13:1068–1079

    CAS  PubMed  Google Scholar 

  120. Gong Y, Meyer EM, Meyers CA, Klein RL, King MA, Hughes JA (2006) Memory-related deficits following selective hippocampal expression of Swedish mutation amyloid precursor protein in the rat. Exp Neurol 200:371–377

    CAS  PubMed  Google Scholar 

  121. Lawlor PA, Bland RJ, Das P et al (2007) Novel rat Alzheimer’s disease models based on AAV-mediated gene transfer to selectively increase hippocampal Abeta levels. Mol Neurodegener 2:11

    PubMed  Google Scholar 

  122. Vidal R, Frangione B, Rostagno A et al (1999) A stop-codon mutation in the BRI gene associated with familial British ­dementia. Nature 399:776–781

    CAS  PubMed  Google Scholar 

  123. Vidal R, Revesz T, Rostagno A et al (2000) A decamer duplication in the 3′ region of the BRI gene originates an amyloid peptide that is associated with dementia in a Danish kindred. Proc Natl Acad Sci U S A 97:4920–4925

    CAS  PubMed  Google Scholar 

  124. Lewis PA, Piper S, Baker M et al (2001) Expression of BRI-amyloid beta peptide fusion proteins: a novel method for specific high-level expression of amyloid beta peptides. Biochim Biophys Acta 1537:58–62

    CAS  PubMed  Google Scholar 

  125. LaFerla FM, Tinkle BT, Bieberich CJ, Haudenschild CC, Jay G (1995) The Alzheimer’s A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet 9:21–30

    CAS  PubMed  Google Scholar 

  126. Iijima K, Liu HP, Chiang AS, Hearn SA, Konsolaki M, Zhong Y (2004) Dissecting the pathological effects of human Abeta 40 and Abeta42 in Drosophila: a potential model for Alzheimer’s disease. Proc Natl Acad Sci U S A 101:6623–6628

    CAS  PubMed  Google Scholar 

  127. Oddo S, Caccamo A, Shepherd JD et al (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421

    CAS  PubMed  Google Scholar 

  128. Chapman PF, White GL, Jones MW et al (1999) Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci 2:271–276

    CAS  PubMed  Google Scholar 

  129. Hsia AY, Masliah E, McConlogue L et al (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci U S A 96:3228–3233

    CAS  PubMed  Google Scholar 

  130. Westerman MA, Cooper-Blacketer D, Mariash A et al (2002) The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 22:1858–1867

    CAS  PubMed  Google Scholar 

  131. Jacobsen JS, Wu CC, Redwine JM et al (2006) Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 103:5161–5166

    CAS  PubMed  Google Scholar 

  132. Lu Y (2004) Recombinant adeno-associated virus as delivery vector for gene therapy – a review. Stem Cells Dev 13:133–145

    CAS  PubMed  Google Scholar 

  133. Aucoin MG, Perrier M, Kamen AA (2008) Critical assessment of current adeno-­associated viral vector production and quantification methods. Biotechnol Adv 26:73–88

    CAS  PubMed  Google Scholar 

  134. Grieger JC, Choi VW, Samulski RJ (2006) Production and characterization of adeno-­associated viral vectors. Nat Protoc 1:1412–1428

    CAS  PubMed  Google Scholar 

  135. Levites Y, Das P, Price RW et al (2006) ­Anti-Abeta42- and anti-Abeta 40-specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model. J Clin Invest 116:193–201

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lawlor, P.A., Young, D. (2011). Aβ Infusion and Related Models of Alzheimer Dementia. In: De Deyn, P., Van Dam, D. (eds) Animal Models of Dementia. Neuromethods, vol 48. Humana Press. https://doi.org/10.1007/978-1-60761-898-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-898-0_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-897-3

  • Online ISBN: 978-1-60761-898-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics