Skip to main content

Lesion-Induced Vertebrate Models of Alzheimer Dementia

  • Protocol
  • First Online:
Book cover Animal Models of Dementia

Part of the book series: Neuromethods ((NM,volume 48))

Abstract

No animal spontaneously suffers from Alzheimer’s disease (AD), nor can it be experimentally induced. However, there is a huge research need for models of AD. Lesion-induced vertebrate models of this disease have been, and indeed remain, extremely important in the study of AD pathogenesis and possible treatment. The cholinergic hypothesis of AD has led to the development of a number of animal models for studying the pathogeny of cortical cholinergic involution in vivo. Focal lesions in the cholinergic centers of the basal forebrain, especially of the nucleus basalis magnocellularis of rodents, as well as more general lesions of all the cholinergic neurons of the basal forebrain, have been the most used methods for obtaining these models. Surgical procedures and intraparenchymal or intracerebroventricular (i.c.v.) microinjections of toxic substances, such as quinolic, kainic, N-methyl-D-aspartic, ibotenic and quisqualic acids, the specific cholinotoxin AF64, the immunotoxin 192 IgG-saporin, and amyloid, have all been used to produce such lesions. They have also been used to produce lesion-induced cortical models of AD. Other models have been developed that involve brain implants or microinjections of amyloid as well as the administration, via different routes, of toxic agents such as aluminum, okadaic acid, or alcohol. The research carried out with these models has helped our understanding of AD, especially in the role of cerebral cholinergic innervation in cognitive disorders and their treatments. However, conflicting results are also obtained, and much controversy has developed concerning the role of the cholinergic system and the suitability of these models. It is very important to take into account a wide variety of factors (including e.g., the model protocol, the lesion-inducing agent, the type and concentration of toxin used, and even the morphohistochemical, biochemical, and cognitive methods used to evaluate the changes induced) that could condition the appreciated features of the lesion and its neuropathological and cognitive consequences. This chapter covers the theoretical and practical use of lesion-induced models and examines the main advantages and disadvantages associated with their use. The further use of classic lesion-induced models, and of new models developed in other rodent subspecies, should lead to important advances in our knowledge and treatment of AD and related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toledano A (1988) Hypotheses concerning the aetiology of Alzheimer’s disease. Pharmacopsy­chiatry 21:17–25

    Google Scholar 

  2. Sivaprakasam K (2006) Towards a unifying hypothesis of Alzheimer’s disease: Cholinergic system linked to plaques, tangles and neuroinflammation. Curr Med Chem 13:2179–2188

    CAS  PubMed  Google Scholar 

  3. Bartus RT, Dean RL, Beer B, et al. (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–417

    CAS  PubMed  Google Scholar 

  4. Hardy J (2006) Alzheimer’s disease: The amyloid cascade hypothesis: An update and reappraisal. J Alzheimers Dis 9:151–153

    CAS  PubMed  Google Scholar 

  5. Sorrentino G, Bonavita V (2007) Neuro‑degeneration and Alzheimer’s Disease: The lesson from tauopathies. Neurol Sci 28:63–71

    CAS  PubMed  Google Scholar 

  6. Toledano A, Álvarez MI (2004) Lesions and dysfunctions of the nucleus basalis as Alzheimer’s disease models: General and critical overview and analysis of the long-term changes in several excitotoxic models. Curr Alz Res 1:189–214

    CAS  Google Scholar 

  7. Giovannelli L, Casamenti F, Scali C, et al. (1995) Differential effects of amyloid peptides beta(1–40) and beta(25–35) injections into the rat nucleus basalis. Neuroscience 66:781–792

    CAS  PubMed  Google Scholar 

  8. Giovannelli L, Scali, Faussone-Pellegrini MS, et al. (1998) Long-term changes in the aggregation state and toxic effects of beta-amyloid injected into the rat brain. Neuroscience 87:349–357

    CAS  PubMed  Google Scholar 

  9. Sipos E, Kurunczi A, Kasza A, et al. (2007) Beta-amyloid pathology in the entorhinal cortex of rats induces memory deficits: Implications for Alzheimer’s disease. Neuroscience 147:28–36

    CAS  PubMed  Google Scholar 

  10. Stéphan A, Laroche S, Davis S (2001) Generation of aggregated beta-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits. J Neurosci 21:5703–5714

    PubMed  Google Scholar 

  11. Perry TA, Hodges H, Gray JA (2001) Behavioural, histological and immunocytochemical consequences following 192-IgG saporin immunolesions of the basal forebrain cholinergic system. Brain Res Bull 54:29–48

    CAS  PubMed  Google Scholar 

  12. Pizzo DP, Waite JJ, Thal LJ, et al. (1999) Intraparenchymal infusions of 192 IgG-saporin: Development of a method for selective and discrete lesioning of cholinergic basal forebrain nuclei. J Neurosci Methods 91:9–19

    CAS  PubMed  Google Scholar 

  13. Torres EM, Perry TA, Blockland A, et al. (1994) Behavioural, histochemical and biochemical consequences of selective immunolesions in discrete regions of the basal forebrain cholinergic system. Neuroscience 63:95–122

    CAS  PubMed  Google Scholar 

  14. Rossner S, Schliebs R, Härting W, et al. (1995) 192 IgG-saporin-induced selective lesion of cholinergic basal forebrain system: Neurochemical effects on cholinergic neurotransmission in rat cerebral cortex and hippocampus. Brain Res Bull 38:371–381

    CAS  PubMed  Google Scholar 

  15. Yuede CM, Dong H, Csernansky JG (2007) Anti-dementia drugs and hippocampal-dependent memory in rodents. Behav Pharmacol 18:347–363

    CAS  PubMed  Google Scholar 

  16. Dunnett SB, Whishow IQ, Jones GH, et al. (1987) Behavioural, biochemical and histochemical effects of different neurotoxic amino acids injected into nucleus basalis magnocellularis of rats. Neuroscience 20:653–669

    CAS  PubMed  Google Scholar 

  17. Smith G (1988) Animal models od Alzheimer’s disease: Experimental cholinergic denervation. Brain Res Rev 13:103–118

    Google Scholar 

  18. Casamenti F, Di Patre PL, Bartolini L, et al. (1988) Unilateral and bilateral nucleus basalis lesions: Differences in neurochemical and behavioural recovery. Neuroscience 24:209–215

    CAS  PubMed  Google Scholar 

  19. Wellman CL, Sengelaub DR (1991) Cortical neuroanatomical correlates of behavioral deficits produced by lesion of the basal forebrain in rats. Behav Neural Biol 56:1–24

    CAS  PubMed  Google Scholar 

  20. Solomon PR, Flynn D, Mirak J, et al. (1998) Five-year retention of the classically conditioned eyeblink response in young adult, middle-aged, and older humans. Psychol Aging 13:186–192

    CAS  PubMed  Google Scholar 

  21. Monzon-Mayor M, Álvarez MI, Arbelo-Galván JF, et al. (2000) Long-term evolution of local, proximal and remote astrocyte responses after diverse nucleus basalis lesioning (an experimental Alzheimer model). GFAP immunocytochemical study. Brain Res 865:245–258

    CAS  PubMed  Google Scholar 

  22. Toledano A (1992) Evolution of cholinergic cortical innervation after nbM lesioning. (An experimental Alzheimer model). In: Knezevic S, Spilich G, Wisniewsky E (eds) Neuro­development, aging and cognition. Birkhäuser, Boston, MA/Basel, Switzerland/Berlin, pp 173–198

    Google Scholar 

  23. Savory J, Herman MM, Ghribi O (2006) Mechanisms of aluminum-induced neurodegeneration in animals: Implications for Alzheimer’s disease. J Alzheimers Dis 10:135–144

    PubMed  Google Scholar 

  24. Rodella LF, Ricci F, Borsani E, et al. (2008) Aluminium exposure induces Alzheimer’s disease-like histopathological alterations in mouse brain. Histol Histopathol 23:433–439

    CAS  PubMed  Google Scholar 

  25. Arendt T (1993) The cholinergic deafferentation of the cerebral cortex induced by chronic consumption of alcohol: Revesal by cholinergic drugs and transplantation. In: Hunt WA, Nixon SJ (eds) Alcohol induced brain damage. NIH Publications Nº 93–3549, US Departament of Health and Human Services, Rockville, IN, pp 431–460

    Google Scholar 

  26. Arendt T (1994) Impairment in memory function and neurodegenerative changes in the cholinergic basal forebrain system induced by chronic intake of ethanol. J Neural Transm 44[Suppl]:173–187

    CAS  Google Scholar 

  27. Casamenti F, Prosperi C, Scale C, et al. (1998) Morphological, biochemical and bechavioural changes induced by neurotoxic and inflammatory insults to the nucleus basalis. Int J Dev Neuroscience 16:705–714

    CAS  Google Scholar 

  28. Shaughnessy LW, Barone S, Mundy WR, et al. (1994) Comparison of intracraneal infusions of colchicine and ibotenic acid as models of neurodegeneration in the basal forebrain. Brain Res 637:15–26

    CAS  PubMed  Google Scholar 

  29. Gower AJ, Rousseau D, Jamsin P, et al. (1989) Behavioural and histological effects of low concentrations of intraventricular AF64A. Eur J Pharmacol 166:271–281

    CAS  PubMed  Google Scholar 

  30. Leanza G, Nilsson OG, Wiley RG, et al. (1995) Selective lesioning of the basal ­forebrain cholinergic system by intraventricular 192 IgG-saporin: Behavioural, biochemical and stereological studies in the rat. Eur J Neurosci 7:329–343

    CAS  PubMed  Google Scholar 

  31. Lecanu L, Greeson J, Papadopoulos V (2006) Beta-amyloid and oxidative stress jointly induce neuronal death, amyloid deposits, gliosis, and memory impairment in the rat brain. Pharmacology 76:19–33

    CAS  PubMed  Google Scholar 

  32. Aguilar JS, Jerusalinsky D, Sotckert M, et al. (1982) Localization of hippocampal muscarinic receptors after kainic acid lesion of CA3 and Fimbria-Fornix Transection. Brain Res 247:335–340

    CAS  PubMed  Google Scholar 

  33. Leo G, Genedani S, Filaferro M, et al. (2007) Hyper-homocysteinemia alters amyloid peptide-clusterin interactions and neuroglial network morphology and function in the caudate after intrastriatal injection of amyloid peptides. Curr Alzheimer Res 4:305–313

    CAS  PubMed  Google Scholar 

  34. Iwasaki K, Egashira N, Hatip-Al-Khatib I, et al. (2006) Cerebral ischemia combined with beta-amyloid impairs spatial memory in the eight-arm radial maze task in rats. Brain Res 1097:216–223

    CAS  PubMed  Google Scholar 

  35. Toledano A, Bentura ML (1994) Pyritinol facilitates the recovery of cortical cholinergic deficits caused by nucleus basalis lesions. J Neural Transm [Park Dis Dement Sec] 7:195–209

    CAS  Google Scholar 

  36. Pepeu G (2001) Overview and perspective on the therapy of Alzheimer’s disease from a preclinical viewpoint. Progs Neuropsycho­pharmacol Biol Psychiatr 25:193–209

    CAS  Google Scholar 

  37. Bartus RT (1988) The need for common perspectives in the development and use of animal models for age-related cognitive and neurodegenerative disorders. Neurobiol Aging 9:445–451

    CAS  PubMed  Google Scholar 

  38. Pshennikova MG, Popkova EV, Khomenko IP, et al. (2005) Resistance to neurodegenerative brain damage in August and Wistar rats. Bull Exp Biol Med 139:540–542

    CAS  PubMed  Google Scholar 

  39. Pndiki S, Stamatakis A, Frangkouli A, et al. (2006) Effects of neonatal handling on the basal forebrain cholinergic system of adult male and female rats. Neurosci 142:305–314

    Google Scholar 

  40. Vaucher E, Aumnot N, Pearson D, et al. (2001) Amyloid Beta peptide levels and its effects on hippocampal acetylcholine release in aged, cognitively-impaired and –unimpared rats. J Chem Neuroanat 21:323–329

    CAS  PubMed  Google Scholar 

  41. Works SJ, Wilson RE, Wellman CL (2004) Age-dependent effect of cholinergic lesion on dendritic morphology in rat frontal cortex. Neurobiol Aging 24:963–974

    Google Scholar 

  42. Anger WK (1991) Animal test systems to study behaviorual dysfunctions of neurodegenerative disorders. Neurotoxicol 12:403–413

    CAS  Google Scholar 

  43. Chida Y, Sudo N, Mori J, Kubo C (2006) Social isolation stress impairs passive avoidance learning in senescence-accelerated mouse (SAM). Brain Res 1067:201–208

    CAS  PubMed  Google Scholar 

  44. Bigl V, Arendt T, Biesold D (1990) The nucleus basalis of Meynert during ageing and dementing neuropsychiatric disorders. In: Steriade M, Biesold D (eds) Brain cholinergic system. Oxford University Press, Oxford, pp 364–386

    Google Scholar 

  45. Michalek H, Fortuna S, Pintor A (1988) Age-related differences in brain cholin acetyltranspherase, cholinesterases and muscarinic receptor sites in two strains of rats. Neurobiol Aging 10:143–148

    Google Scholar 

  46. Chen Y, Fenoglio KA, Dubé CM, et al. (2006) Cellular and molecular mechanisms of hippocampal activation by acute stress are age-dependent. Mol Psychiatr 11:992–1002

    CAS  Google Scholar 

  47. Zawai N, Arendash GW, Wecker L (1992) Basal forebrain cholinergic neurons in aged rat brain are more susceptible to ibotenate-induced degeneration than neurons in young adult brain. Brain Res 589:333–337

    Google Scholar 

  48. Pepeu G, Marconcini PI (1994) Dysfunction of the brain cholinergic system during aging and after lesions of the nucleus basalis of Meynert. J Neural Transm 44[Suppl]:189–194

    CAS  Google Scholar 

  49. Wellman CL, Sengelaub DR (1995) Alterations in dendritic morphology of frontal cortical neurons after basal forebrain lesions in adult and aged rats. Brain Res 69:48–58

    Google Scholar 

  50. Gu Z, Yu J, Perez-Polo JR (1998) Responses in the aged rat brain after total immunolesion. J Neurosci Res 54:7–16

    CAS  PubMed  Google Scholar 

  51. Williams B, Granholm AC, Sambamurti K (2007) Age-dependent loss of NGF signaling in the rat basal forebrain is due to disrupted MAPK activation. Neurosci Lett 413:110–114

    CAS  PubMed  Google Scholar 

  52. Fischer W, Gage FH, Bjorklund A (1989) Degenerative changes in forebrain cholinergic nuclei correlate with cognitive impairments in aged rats. Eur J Neurosci 1:34–45

    PubMed  Google Scholar 

  53. Peinado MA, Martínez M, Pedrosa JA, et al. (1993) Quantitative morphological changes in neurons and glia in the frontal lobe of the aging rat. Anat Rec 237:104–108

    CAS  PubMed  Google Scholar 

  54. Saito S, Kobayashi S, Ohashi Y, et al. (1994) Decreased synaptic density in aged brains and its prevention by rearing under enriched environment as revealed by synaptophysin content. J Neurosci Res 39:57–62

    CAS  PubMed  Google Scholar 

  55. MacDonald NJ, Decorti F, Pappas TC, et al. (2000) Cytokine/neurotrophin interaction in the aged central nervous system. J Anat 197:543–551

    CAS  PubMed  Google Scholar 

  56. Nicolle MM, Gonzalez J, Sugaya K, et al. (2001) Signatures of hippocampal oxidative stress in aged spatial learning-impaired rodents. Neuroscience 107:415–431

    CAS  PubMed  Google Scholar 

  57. von Bohlen O, Zacher C, Gass P, Unsicker K (2006) Age-related alterations in hippocampal spines and deficiencies in spatial memory in mice. J Neurosci Res 83:525–531

    Google Scholar 

  58. Bertoni-Freddari C, Guiuli C, Pieri C, et al. (1986) Quantitative investigation of the morphological plasticity of synaptic function in rat dentare gyrus during aging. Brain Res 366:187–192

    CAS  PubMed  Google Scholar 

  59. Palop JJ, CHin J, Roberson ED, et al. (2007) Aberrant excitatory neuronal activity and compensatory remodelling of inhibitory hippocampal circuits in mouse models of Alzheimer’s Disease. Neuron 55:697–711

    CAS  PubMed  Google Scholar 

  60. Shute CD, Lewis PR (1963) Cholinergic neurons pathways in the brain. Nature 99:1160–1164

    Google Scholar 

  61. Shute CD, Lewis PR (1967) The ascending cholinergic reticular system: Neocortical, olfactory and subcortical projections. Brain 90:497–520

    CAS  PubMed  Google Scholar 

  62. Krnjevic K, Silver A (1965) A histochemical study of cholinergic fibers in the cerebral cortex. J Anat 99:711–759

    CAS  PubMed  Google Scholar 

  63. Johnston MV, McKinney M, Coyle JT (1981) Neocortical cholinergic innervation: A description of extrinsic and intrinsic ­components in the rat. Exp Brain Res 43:159–172

    CAS  PubMed  Google Scholar 

  64. Butcher LL, Woolf NJ (1986) Central cholinergic systems: Synopsis of anatomy and overview of physiology and pathology. In: Scheibel AB, Weschler AF, Brazier MAB (eds) The biological substrates of Alzheimer’s disease. Academic, Orlando, FL/San Diego, CA, pp 73–86

    Google Scholar 

  65. Schwaber JS, Rogers WT, Satoh K, et al. (1987) Distribution and organization of cholinergic neurons of the rat forebrain ­demonstrated by computerized data acquisition and three dimensional reconstruction. J Comp Neurol 263:309–325

    CAS  PubMed  Google Scholar 

  66. Mesulam MM, Mufson EJ, Levey AI, et al. (1983) Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substancia innominate) and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197

    CAS  PubMed  Google Scholar 

  67. Mesulam MM, Mufson EJ, Weiner EJ, et al. (1983) Central cholinergic pathway in the rat: An overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10:1185–1201

    CAS  PubMed  Google Scholar 

  68. Rye DB, Wainer BH, Mesulam MM, et al. (1984) Cortical projections arising from the basal forebrain: A study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase Neuroscience 13:627–643

    CAS  PubMed  Google Scholar 

  69. Batchelor PE, Armstrong DM, Blaker SN, et al. (1989) Nerve growth factor receptor and choline acetyltransferase colocalization in neurons within the rat forebrain: Response to fimbria-fomix transection. J Comp Neurol 284:187–204

    CAS  PubMed  Google Scholar 

  70. Woolf NJ, Gould E, Butcher LL (1989) Nerve growth factor receptor is associated with cholinergic neurons of the basal forebrain but not the pontomesencephalon. Neuroscience 30:143–152

    CAS  PubMed  Google Scholar 

  71. Bennett-Clarke CA, Joshep SA (1986) Immunocytochemical localization of somatostatin in human brain. Peptides 7:877–884

    CAS  PubMed  Google Scholar 

  72. Crowley JN, Wenk GL (1989) Co-existence of galanin involved in memory processes and dementia? Trends Neurosci 12:278–281

    Google Scholar 

  73. Unger JW, Schmidt Y (1994) Neuropeptide Y and somatostatin in the neocortex of young and aging rats: Response to nucleus basalis lesions. J Chem Neuroanat 7:25–34

    CAS  PubMed  Google Scholar 

  74. Köller C, Chan-Palay V, Wu JY (1984) Septal neurons containing glutamic acid decarboxylase immunoreactivity project to the hippocampal region in the rat brain. Anat Embryol 169:41–44

    Google Scholar 

  75. Senut MC, Menetrey D, Lamour Y (1989) Cholinergic and peptidergic projections from the medial septum and the nucleus of the diagonal band of Broca to dorsal hippocampus, cingulate cortex and olfactory bulb: A comibined wheat germagglutinin- apohorseradish peroxidase- gold immunohistochemical study. Neuroscience 30:385–403

    CAS  PubMed  Google Scholar 

  76. Bogdanovic N, Nilsson L, Adem A, et al. (1993) Decrease of somatostatin receptor binding in the rat cerebral cortex after ibotenic acid lesion of the nucleus basalis magnocellularis: A quantitative autoradiographic study. Brain Res 628:31–38

    CAS  PubMed  Google Scholar 

  77. Walker LC, Koliatsos VE, Kitt CA, et al. (1989) Peptidergic neurons in the basal forebrain magnocellular complex of the rhe¬sus monkey. J Comp Neurol 280:272–282

    CAS  PubMed  Google Scholar 

  78. Brashear HR, Zaborsky L, Heimer L (1984) Distribution of gabaergic and cholinergic neurons in the rat diagonal band. Neuroscience 17:439–451

    Google Scholar 

  79. Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsichiatric disorders: The striatopallidal, amyg¬daloid and corticopetal components of substantia innominata. Neuroscience 27:1–39

    CAS  PubMed  Google Scholar 

  80. Bigl V, Woolf NJ, Butcher LL (1982) Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital and cingulate cortices: A combined fluorescent tracer and acetylcholinesterase analysis. Brain Res Bull 8:727–749

    CAS  PubMed  Google Scholar 

  81. Sarter M, Bruno JP (1997) Cognitive functions of cortical acetylcholine: Toward a unifying hypothesis. Brain Res Rev 23:28–46

    CAS  PubMed  Google Scholar 

  82. Barskerville KA, Chang HT, Herron P (1993) Topography of cholinergic afferents from the nucleus basalis of Meynert to representational areas of sensorimotor cortices in the rat. J Comp Neurol 335:552–562

    Google Scholar 

  83. Teyler TJ, DiScena P (1986) The hippocampal memory indexing theory. Behav Neurosci 100:147–154

    CAS  PubMed  Google Scholar 

  84. Mallet PE, Beninger RJ, Flesher SN, et al. (1995) Nucleus basalis lesions: Implications of basoamygdaloid cholinergic pathways in memory. Brain Res Bull 36:51–56

    CAS  PubMed  Google Scholar 

  85. Aguilar JS, Jerusalinsky D, Stockert M, et al. (1982) Localization of Hippocampal Muscarinic Receptors after kainic acid lesion of CA3 and fimbria-fornix transection. Brain Res 247:335–340

    CAS  PubMed  Google Scholar 

  86. Sabato UC, Aguilar JS, Medina JH, et al. (1981) Changes in rat hippocampal benzodiazepine receptors and lack of changes in muscarinic receptors after fimbria-fornix lesions. Neurosci Lett 27:193–198

    CAS  PubMed  Google Scholar 

  87. Wendt JS, Fagg GE, Cotman CW (1983) Regeneration of rat hippocampal fimbria fibers after fimbria transection and peripheral nerve or fetal hippocampal implantation. Exp Neurol 79:452–461

    CAS  PubMed  Google Scholar 

  88. Alonso JR, U HS, Amaral DG (1996) Cholinergic innervation of the primate hippocampal formation: II. Effects of fimbria/formix transection. J Comp Neurol 375:527–551

    CAS  PubMed  Google Scholar 

  89. He Y, Yao Z, Gu Y, et al. (1992) Nerve growth factor promotes collateral sprouting of cholinergic fibers in the septohippocampal cholinergic system of aged rats with fimbria transection. Brain Res 586:27–35

    CAS  PubMed  Google Scholar 

  90. Lescaudron L, Stein DG (1999) Differences in memory impaiment and response to GM1 ganglioside treatment following electrolytic or ibotenic acid lesions of the nucleus basalis magnocellularis. Restor Neurol Neurosci 15:25–37

    CAS  PubMed  Google Scholar 

  91. Popovic N, Popovic M, Jovanova-Nesic K, et al. (2002) Effect of neural transplantation on depressive behavior in rats with lesioned nucleus basalis magnocellularis. Int J Neurosci 112:105–115

    PubMed  Google Scholar 

  92. Vale-Martínez A, Guillazo-Blanch G, Marti-Nicolovius M, et al. (2002) Electrolytic and ibotenic acid lesions of the nucleus basalis magnocellularis interrupt long-term retention, but not acquisition of two-way active avoidance, in rats. Exp Brain Res 142:52–66

    PubMed  Google Scholar 

  93. Nishimura A, Homann CF, Johnston MV, et al. (2002) Neonatal electrolytic lesions of the basal forebrain stunt plasticity in mouse barrel field cortex. Int J Dev Neurosci 20:481–489

    PubMed  Google Scholar 

  94. Marston HM, West HL, Wilkinson LS, et al. (1994) Effects of excitotoxic lesions of the septum and vertical limb nucleus of the diagonal band of Broca on conditional visual discrimination: Relationships between performance and choline acetyltransferase activity in the cingulate cortex. J Neurosci 14:2009–2019

    CAS  PubMed  Google Scholar 

  95. Mulder J, Harkany T, Czollner K, et al. (2005) Galantamine-induced behavioral recovery after sublethal excitotoxic lesions to the rat medial septum. Behav Brain Res 163:33–41

    CAS  PubMed  Google Scholar 

  96. Bartus RT, Flicker C, Dean RL, et al. (1985) Selective memory loss following nucleus basalis lesions: Long term behavioral recovery despite persistent cholinergic deficiencies. Pharmacol Biochem Behav 23:125–135

    CAS  PubMed  Google Scholar 

  97. Bartus RT, Pontecorco MJ, Flicker C, et al. (1986) Behavioral recovery following bilateral lesions of the nucleus basalis does not occur spontaneously. Pharmacol Biochem Behav 24:1287–1292

    CAS  PubMed  Google Scholar 

  98. EI-Defrawy SR, Coloma E, Jhamandas K, et al. (1986) Lack of recovery of cortical cholinergic function following quinolic or ibotenic acid injections into the nucleus basalis magnocellularis in rats. Exp Neurol 91:628–633

    Google Scholar 

  99. EI-Defrawy SR, Coloma F, Jhamandas K, et al. (1985) Functional and neurochemical cortical cholinergic impairment following neurotoxic lesions of the nucleus basalis magnocellularis in the rat. Neurobiol Aging 6:325–330

    Google Scholar 

  100. Casamenti F, Di Patre PL, Milan F, et al. (1989) Effects of nerve growth factor and GM 1 ganglioside on the number and size of cholinergic neurons in rats with unilateral lesion of the nucleus basalis. Neurosci Lett 103:87–91

    CAS  PubMed  Google Scholar 

  101. Gardiner IM, De Belleroche J, Prom BK, et al. (1987) Effect of lesion of the nucleus basalis of rat on acetylcholine release in cerebral cortex. Time course of compensatory events. Brain Res 407:263–271

    CAS  PubMed  Google Scholar 

  102. Toledano A (1993) Impairment of the cholinergic systems of the nucleus basalis- An animal model for damage of the cholinergic system in Alzheimer’s Disease. In: Maurer K (ed) Neurochemistry, neuropathology, neuroimaging, neuropsychology, genetics of Dementias. Vieweg Verlag, Braunschweig, Germany, pp 1–24

    Google Scholar 

  103. Haroutunian V, Kanof PD, Davis KL (1986) Partial reversal of lesion induced deficits in cortical cholinergic markers by nerve growth factor. Brain Res 386:397–399

    CAS  PubMed  Google Scholar 

  104. Olney JW (1994) New mechamisms of excitatory transmitter neurotoxicity. J Neural Tramsm 43[Supp]:47–51

    CAS  Google Scholar 

  105. Dunnet SB, Everitt BJ, Robbins TW (1991) The basal forebrain-cortical cholinergic system: Interpreting the functional consequences of excitotoxic lesions. Trend Neurosci 4:494–501

    Google Scholar 

  106. Schwart R, Köhler Ch (1980) Evidence against and exclusive role of glutamate in kainic acid neurotoxicity. Neurosci Lett 9:243–249

    Google Scholar 

  107. Rossner S, Schliebs R, Bigl V (1994) Ibotenic acid lesions of nucleus basalis magnocellularis differencitally affects cholinergic, glutamatergic and GABAergic markers in cortical rat brain regions. Brain Res 668:85–99

    CAS  PubMed  Google Scholar 

  108. Kilgard M (2003) Cholinergic modulation of skill learning and plasticity. Neuron 38:678–680

    CAS  PubMed  Google Scholar 

  109. Bregman RJ, El-Defraway SR, Jhamandas K, et al. (1985) Quinolic acid neurotoxicity in the nucleus basalis antagonized by kynurenic acid. Neurobiol Aging 6:331–336

    Google Scholar 

  110. Petterson GM, McGinty JF (1988) Direct neurotoxic effects of colchicine and cholinergic neurons in medial septum and striatum. Neurosci Lett 94:46–51

    Google Scholar 

  111. Tilson HA, Schwartz RD, Ali SF, et al. (1989) Colchicine administered into the area of the nucleus basalis decreases cortical nicotinic cholinergic receptors labelled by [3H]-acetylcholine. Neuropharmacology 28:855–861

    CAS  PubMed  Google Scholar 

  112. Di Patre PL, Abbamondi A, Bartolini L, et al. (1989) GM1 ganglioside counteracts cholinergic and behavioral deficits induced in the rat by intracerebral injections of vincristine. Eur J Pharm 162:43–50

    CAS  Google Scholar 

  113. Beach TG, Potter PE, Kuo YM, et al. (2000) Cholinergic deafferentation of the rabbit cortex: A new animal model of Abeta deposition. Neurosci Lett 283:9–12

    CAS  PubMed  Google Scholar 

  114. Ridley RM, Barefoot HC, Maclean CJ, et al. (1999) Different effects on learning ability after injection of the cholinergic immunotoxin ME20. 4IgG-saporin into the diagonal band of Broca, basal nucleus of Meynert, or both in monkeys. Behav Neurosci 113:303–315

    CAS  PubMed  Google Scholar 

  115. Wenk GL (1993) A primate model of Alzheimer`s disease. Behav Brain Res 7:117–122

    Google Scholar 

  116. Kordower JH, Winn SR, Liu YT, et al. (1994) The aged monkey basal forebrain: Rescue and sprouting of axotomized basal forebrain neurons after grafts of encapsulated cells secreting human nerve growth factor. Proc Natl Acad Sci U S A 91:10898–10902

    CAS  PubMed  Google Scholar 

  117. Bontempi B, Whelan KT, Risbrough VB, et al. (2001) SIB-1553A, (+/-)-4-[[2-(1-methyl-2-pyrrolidinyl)ethyl]thio]phenol hydrochloride, a subtype-selective ligand for nicotinic acetylcholine receptors with putative cognitive-enhancing properties: Effects on working and reference memory performances in aged rodents and nonhuman primates. J Pharmacol Exp Ther 299:297–306

    CAS  PubMed  Google Scholar 

  118. Buccafusco JJ, Jackson WJ, Stone JD, et al. (2003) Sex dimorphisms in the cognitive-enhancing action of the Alzheimer’s drug donepezil in aged rhesus monkeys. Neuro­pharmacology 44:381–389

    CAS  PubMed  Google Scholar 

  119. Sani S, Traul D, Klink A, et al. (2003) Distribution, progression and chemical composition of cortical amyloid-beta deposits in aged rhesus monkeys: Similarities to the human. Acta Neuropathol (Berl) 105:145–156

    CAS  Google Scholar 

  120. Fisher A, Hanin L (1986) Potential animal model for senile dementia of Alzheimer’s type, with emphasis on AF64A-induced cholinotoxicity. Ann Rev Pharmacol Toxicol 26:161–181

    CAS  Google Scholar 

  121. Hanin I (1996) The AF64A model of cholinergic hypofunction: An update. Life Sci 8:1955–1964

    Google Scholar 

  122. Lorens SA, Kindel G, Dong XW, et al. (1991) Septal choline acetyltransferase immunoreactive neurons: Dose-dependent effects of AF64A. Brain Res Bull 26:965–971

    CAS  PubMed  Google Scholar 

  123. Dawson VL, Wamsley JK (1990) Hippocampal muscarinic supersensitivity after AF64A medial septal lesion excludes M1 receptors. Brain Res Bull 25:311–317

    CAS  PubMed  Google Scholar 

  124. Dawson VL, Hunt ME, Wamsley JK (1992) Alterations in cortical muscarinic receptors following cholinotoxin (AF64A) lesion of the rat nucleus basalis magnocellularis. Neurobiol Aging 13:25–32

    CAS  PubMed  Google Scholar 

  125. Kozlowski MR, Arbogast RE (1986) Specific toxic effects of ethylcholine nitrogen mustard on cholinergic neurons of the nucleus basalis of Meynert. Brain Res 372:45–54

    CAS  PubMed  Google Scholar 

  126. Waite JJ, Chen AD, Wardlow ML, et al. (1995) 192 immunoglobulin G-saporin produces graded behavioural and biochemical changes accompanying the loss of cholinergic neurons of the basal forebrains and cerebellar Purkinje cells. Neuroscience 65:463–476

    CAS  PubMed  Google Scholar 

  127. Hartonian I, de Lacalle S (2005) Compensatory changes in cortical cholinergic innervation in the rat following an immunotoxic lesion. Restor Neurol Neurosci 23:87–96

    CAS  PubMed  Google Scholar 

  128. El Tamer A, Corey J, Wulfert E, et al. (1992) Reversible cholinergic changes induced by AF64A in rat hippocampus and possible septal compensatory effect. Neuropharmacology 31:397–402

    CAS  PubMed  Google Scholar 

  129. Lim DK, Oh YH, Kim HS (2001) Impairments of learning and memory following intracerebroventricular administration of AF64A in rats. Arch Pharm Res 24:234–239

    CAS  PubMed  Google Scholar 

  130. McGurk SR, Hortgraves SL, Kelly PH, et al. (1987) Is ethylcholine mustard aziridinium ion specific cholinergic neurotoxin? Neuroscience 22:215–224

    CAS  PubMed  Google Scholar 

  131. Lermontova N, Lukoyanov N, Serkova T, et al. (1998) Effects of tacrine on deficits in active avoidance performance induced by AF64A in rats. Mol Chem Neuropathol 33:51–61

    CAS  PubMed  Google Scholar 

  132. Willson CA, Hanin I (1997) Brain-derived neurotrophic factor induced stimulation of septal choline acetyltransferase activity in ethylcholine mustard aziridinium treated rats. Neurosci Lett 229:149–152

    CAS  PubMed  Google Scholar 

  133. Wiley RG (1992) Neural lesioning with ribosome-inactivating proteins: Suicide transport and immunolesioning. Trends Neurosci 15:285–290

    CAS  PubMed  Google Scholar 

  134. Book AA, Wiley RG, Schweitzer JB (1992) Specificity of 192 IgG-saporin for NGF receptor-positive cholinergic basal forebrain neurons in the rat. Brain Res 590:350–355

    CAS  PubMed  Google Scholar 

  135. Galani R, Jeltsch H, Lehmann O, et al. (2002) Effects of 192 IgG-saporin on acetylcholinesterase histochemistry in male and female rats. Brain Res Bull 58:179–186

    CAS  PubMed  Google Scholar 

  136. Ricceri L, Hohmann C, Berger-Sweeney J (2002) Early neonatal 192 IgG saporin induces learning impairments and disrupts cortical morphogenesis in rats. Brain Res 954:160–172

    CAS  PubMed  Google Scholar 

  137. Dudkin KN, Chueva V, Makarov FN, et al. (2005) Impairments in working memory and decision-taking processes in monkeys in a model of Alzheimer’s disease. Neurosci Behav Physiol 35:281–289

    CAS  PubMed  Google Scholar 

  138. Wenk GL, Stoehr JD, Quintana G, et al. (1994) Behavioural, biochemical, histological, and electrophysiological effects of 192 IgG-saporin injections into the basal forebrain of rats. J Neurosci 14:5986–5995

    CAS  PubMed  Google Scholar 

  139. Berger-Sweeney J, Heckers S, Mesulam MM, et al. (1994) Differential effects on spatial navigation of immunotoxin-in¬duced cholinergic lesions of the medial septal area and nu¬cleus basalis magnocellularis. J Neurosci 14:4507–4519

    CAS  PubMed  Google Scholar 

  140. Lehmann O, Grottick AJ, Cassel JC, et al. (2003) A double dissociation between serial reaction time and radial maze performance in rats subjected to 192 IgG-saporin lesions of the nucleus basalis and/or the septal region. Eur J Neurosci 18:651–666

    CAS  PubMed  Google Scholar 

  141. McGaughy J, Dalley JW, Morrison CH, et al. (2002) Selective behavioral and neurochemical effects of cholinergic lesions produced by intrabasalis infusions of 192 IgG-saporin on attentional performance in a five-choice serial reaction time task. J Neurosci 22:1905–1913

    CAS  PubMed  Google Scholar 

  142. Helm KA, Han JS, Gallagher M (2002) Effects of cholinergic lesions produced by infusions of 192 IgG-saporin on glucocorticoid receptor mRNA expression in hippocampus and medial prefrontal cortex of the rat. Neuroscience 115:765–774

    CAS  PubMed  Google Scholar 

  143. Tomaszewicz M, Rossner S, Schliebs R, et al. (2003) Changes in cortical acetyl-CoA metabolism after selective basal forebrain cholinergic degeneration by 192 IgG-saporin. J Neurochem 87:318–324

    CAS  PubMed  Google Scholar 

  144. Beaule C, Amir S (2002) Effect of 192 IgG-saporin on circadian activity rhythms, expression of P75 neurotrophin receptors, calbindin-D28K, and light-induced Fos in the suprachiasmatic nucleus in rats. Exp Neurol 176:377–389

    CAS  PubMed  Google Scholar 

  145. Ricceri L (2003) Behavioral patterns under cholinergic control during development: Lessons learned from the selective immunotoxin 192 IgG saporin. Neurosci Biobehav Rev 27:377–384

    CAS  PubMed  Google Scholar 

  146. Cassel JC, Gaurivaud M, Lazarus C, et al. (2002) Grafts of fetal septal cells after cholinergic immunotoxic denervation of the hippocampus: A functional dissociation between dorsal and ventral implantation sites. Neuroscience 113:871–882

    CAS  PubMed  Google Scholar 

  147. Bassant MH, Poindessous-Jazat F, Schmidt BH (2000) Sustained effect of metrifonate on cerebral glucose metabolism after immunolesion of basal forebrain cholinergic neurons in rats. Eur J Pharmacol 387:151–162

    CAS  PubMed  Google Scholar 

  148. Ballmaier M, Casamenti F, Scali C, et al. (2002) Rivastigmine antagonizes deficits in prepulse inhibition induced by selectiveimmunolesioning of cholinergic neurons in nucleus basalis magnocellularis. Neuroscience 114:91–98

    CAS  PubMed  Google Scholar 

  149. Wortwein G, Yu J, Toliver-Kinsky T, et al. (1998) Responses of young and aged rat CNS to partial cholinergic immunolesions and NGF treatment. J Neurosci Res 52: 322–333

    CAS  PubMed  Google Scholar 

  150. Berger-Sweeney J, Stearns NA, Murg SL, et al. (2001) Selective immunolesions of cholinergic neurons in mice: Effects on neuroanatomy, neurochemistry, and behavior. J Neurosci 21:8164–8173

    CAS  PubMed  Google Scholar 

  151. Barefoot HC, Baker HF, Ridley RM (2000) Synergistic effects of unilateral immunolesions of the cholinergic projections from the basal forebrain and contralateral ablations of the inferotemporal cortex and hippocampus in monkeys. Neuroscience 98:243–251

    CAS  PubMed  Google Scholar 

  152. Ferreira G, Meurisse M, Gervais R, et al. (2001) Extensive immunolesions of basal forebrain cholinergic system impair offspring recognition in sheep. Neuroscience 106:103–116

    CAS  PubMed  Google Scholar 

  153. Calza L, Giuliani A, Fernandez M, et al. (2003) Neural stem cells and cholinergic neurons: Regulation by immunolesion and treatment with mitogens, retinoic acid, and nerve growth factor. Proc Natl Acad Sci U S A 100:7325–7330

    CAS  PubMed  Google Scholar 

  154. Hepler DJ, Olton DS, Wenk GL, et al. (1985) Lesions in nucleus basalis magnocellularis and media] septal area of rats produce qualitatively similar memory impairment. J Neurosci 5:866–873

    CAS  PubMed  Google Scholar 

  155. Gage FH, Bojorklund A, Stenevi U (1983) Reinnervation of the partially deaffer¬ented hippocampus by compensatory collateral sprouting from aparent cholin¬ergic and adrenergic afferents. Brain Res 268:27–37

    CAS  PubMed  Google Scholar 

  156. Orzi F, Diana G, Casamenti F, et al. (1988) Local cerebral glucose utilization following unilateral and bilateral lesions of the nucleus basalis magnocellularis in the rat. Brain Res 462:99–103

    CAS  PubMed  Google Scholar 

  157. Unger JW, Schmidt Y (1992) Quisqualic acid induced lesion of the nucleus basalis of Meynert in young and aging rats: Plasticity of surviving NGF receptor-positive cholinergic neurons. Exp Neurol 117:269–277

    CAS  PubMed  Google Scholar 

  158. Riekkimen P Jr, Miettinen R, Sirvio J, et al. (1990) The correlation of passive avoidance deficit in aged rat with the loss of nucleus basalis choline acetyltransferase-positive neurons. Brain Res Bull 25:415–417

    Google Scholar 

  159. Wellman CL, Logue SF, Sengelaub DR (1995) Maze learning and morphology of frontal cortex in adult and aged basal forebrain–lesioned rats. Behav Neurosci 109:837–850

    CAS  PubMed  Google Scholar 

  160. Ding M, Haglid KG, Hamberger A (2000) Quantitative immunochemistry on neuronal loss, reactive gliosis and BBB damage in cortex/striatum and hippocampus/amygdala after systemic kainic acid administration. Neurochem Int 36:313–318

    CAS  PubMed  Google Scholar 

  161. Hailer NP, Wirjatijasa F, Roser N, et al. (2001) Astrocytic factors protect neuronal integrity and reduce microglial activation in an in vitro model of N-methyl-D-aspartate-induced excitotoxic injury in organotypic hippocampal slice cultures. Eur J Neurosci 14:315–326

    CAS  PubMed  Google Scholar 

  162. Penkowa M, Molinero A, Carrasco J, et al. (2001) Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures. Neuroscience 102:805–818

    CAS  PubMed  Google Scholar 

  163. Acarin L, Paris J, Gonzalez B, et al. (2002) Glial expression of small heat shock proteins following an excitotoxic lesion in the immature rat brain. Glia 38:1–14

    PubMed  Google Scholar 

  164. Little AR, Benkovic SA, Miller DB, et al. (2002) Chemically induced neuronal damage and gliosis: Enhanced expression of the proinflammatory chemokine, monocyte chemoattractant protein (MCP)-1, without a corresponding increase in proinflammatory cytokines. Neuroscience 115:307–320

    CAS  PubMed  Google Scholar 

  165. Calabrese V, Bates TE, Stella AM (2000) NO synthase and NO-dependent signal pathways in brain aging and neurodegenerative disorders: The role of oxidant/antioxidant balance. Neurochem Res 25:1315–1341

    CAS  PubMed  Google Scholar 

  166. Winkler J, Thal LJ (1995) Effects of nerve growth factor treatment on rats with lesions of the nucleus basalis magnocellularis produced by ibotenic acid, quisqualic acid and AMPA. Exp Neurol 136:234–250

    CAS  PubMed  Google Scholar 

  167. Winkler J, Power AE, Ramirez GA, et al. (1998) Short-term and complete reversal of NGF effects in rat with lesions of the nucleus basalis magnocellularis. Brain Res 788:1–12

    CAS  PubMed  Google Scholar 

  168. Yamamoto M, Chikuma T, Kato T (2003) Changes in the levels of neuropeptides and their metabolizing enzymes in the brain regions of nucleus basalis magnocellularis-lesioned rats. J Pharmacol Sci 92:400–410

    CAS  PubMed  Google Scholar 

  169. Wenk GL, Markowska AL, Olton DS (1989) Basal forebrain lesions and mem¬ory: Alterations in neurotensin not acetylcholine, may cause amnesia. Behav Neurosci 103:765–769

    CAS  PubMed  Google Scholar 

  170. Oliveira A, Hodges H, Rezaie P (2003) Excitotoxic lesioning of the rat basal forebrain with S-AMPA: Consequent mineralization and associated glial response. Exp Neurol 179:127–138

    CAS  PubMed  Google Scholar 

  171. Levey AJ, Wainer BH, Rye DB, et al. (1984) Choline acetyltransferase immunoreactive neurons intrinsic to rodent cortex and distinction from acetylcholinesterase-positive neurons. Neuroscience 13:341–353

    CAS  PubMed  Google Scholar 

  172. De Belleroche J, Gardiner IM, Hamilton MH, et al. (1985) Analysis of muscarinic receptor concentration and subtypes following lesion of rat substantia innominata. Brain Res 340:201–209

    CAS  PubMed  Google Scholar 

  173. Mash DC, Flynn DD, Potter LT (1985) Loss of M2 muscarinic receptors in the cerebral cortex in Alzheimer`s disease and experimental cholinergic denervation. Science 228:1115–1117

    CAS  PubMed  Google Scholar 

  174. Wenk GL, Olton DS (1984) Recovery of neocortical choline acetyltransferase activity following iobotenic acid injection into the nucleus basalis of Meyner in rats. Brain Res 293:184–186

    CAS  PubMed  Google Scholar 

  175. Henderson Z (1991) Sprouting of cholinergic axons does not occur in the cerebral cortex after nucleus basalis lesions. Neuroscience 44:149–156

    CAS  PubMed  Google Scholar 

  176. Winkler J, Thal LJ, Gage FH, et al. (1998) Cholinergic strategies for Alzheimer’s disease. J Mol Med 76:555–567

    CAS  PubMed  Google Scholar 

  177. Casamenti F, Scali C, Giovannelli L, et al. (1994) Effect of nerve growth factor and GM 1 ganglioside on the recovery of cholinergic neurons after a lesion of the nucleus basalis in aging rats. J Neural Transm 7:177–193

    CAS  Google Scholar 

  178. Bartolini L, Casamenti F, Pepeu G (1996) Aniracetam restores object recognition impaired by age, scopolamine, and nucleus basalis lesions. Pharmacol Biochem Behav 53:277–283

    CAS  PubMed  Google Scholar 

  179. Hodges H, Allen Y, Kershow T, et al. (1991) Effects of cholinergic-rich neural grafts on radial maze performance of rats after excitotoxic lesions of the forebrain cholinergic projection system- I Ameloriation of cognitive deficits by transplants into cortex and hippocampus but not into basal forebrain. Neuroscience 45:587–607

    CAS  PubMed  Google Scholar 

  180. Hodges H, Allen Y, Sinden J, et al. (1991) The effects of cholinergic drugs and cholinergic-rich foetal neuronal transplants on alcohol-induced deficits in radial maze performance in rats. Behav Brain Res 43:7–28

    CAS  PubMed  Google Scholar 

  181. Zhang ZJ, Lappi DA, Wrenn CC, et al. (1998) Selective lesion of the cholinergic basal forebrain causes a loss of cortical ­neuropeptide Y and somatostatin neurons. Brain Res 800:198–206

    CAS  PubMed  Google Scholar 

  182. Katsumi Y, Hayashi T, Oyanagi C, et al. (2000) Glucose metabolism in the rat frontal cortex recovered without the recovery of choline acetyltransferase activity after lesioning of the nucleus basalis magnocellularis. Neurosci Lett 280:9–12

    CAS  PubMed  Google Scholar 

  183. Harkany T, Dijkstra IM, Oosterink BJ, et al. (2000) Increased amyloid precursor protein expression and serotonergic sprouting following excitotoxic lesion of the rat magnocellular nucleus basalis: Neuroprotection by Ca(2+) antagonist nimodipine. Neuroscience 101:101–114

    CAS  PubMed  Google Scholar 

  184. Wallace W, Ahlers ST, Gotlib J, et al. (1993) Amyloid precursor protein in the cerebral cortex is rapidly and persistently induced by loss of subcortical innervation. Proc Natl Acad Sci U S A 90:8712–8716

    CAS  PubMed  Google Scholar 

  185. Haroutunian V, Greig N, Pei XF, et al. (1997) Pharmacological modulation of Alzheimer’s beta-amyloid precursor protein levels in the CSF of rats with forebrain cholinergic system lesions. Brain Res Mol 46:161–168

    CAS  Google Scholar 

  186. Lin L, Georgievska B, Mattsson A, et al. (1999) Cognitive changes and modified processing of amyloid precursor protein in the cortical and hippocampal system after cholinergic synapse loss and muscarinic receptor activation. Proc Natl Acad Sci U S A 96:12108–12113

    CAS  PubMed  Google Scholar 

  187. Friedman E, Lerer B, Kuster J (1983) Loss of cholinergic neurons in the rat neocortex produces deficits in passive avoidance learning. Pharmacol Biochem Behav 19:309–312

    CAS  PubMed  Google Scholar 

  188. Miyamoto M, Shintani M, Nagaoka A, et al. (1985) Lesioning of the rat basal forebrain leads to memory impairments in passive and active avoidance. Brain Res 328:97–104

    CAS  PubMed  Google Scholar 

  189. Connor DJ, Langlais PJ, Thal LJ (1991) Behavioral impair¬ments after lesions of the nucleus basalis by ibotenic acid and quisqualic acid. Brain Res 555:84–90

    CAS  PubMed  Google Scholar 

  190. Salomone ID, Beart PM, Alpert JE, et al. (1984) Impairment in T-maze reinforced alternation performance following nu¬cleus basalis magnocellularis lesions in rats. Behav Brain Res 13:63–70

    Google Scholar 

  191. Wellman CL, Pelleymounter MA (1999) Differential effects of nucleus basalis lesions in young adult and aging rats. Neurobiol Aging 20:381–393

    CAS  PubMed  Google Scholar 

  192. Markowska AL, Wenk GL, Olton DS (1990) Nucleus basalis magnocellularis and memory: Differential effects of two neu¬rotoxins. Behav Neural Biol 54:13–26

    CAS  PubMed  Google Scholar 

  193. Bartus RT (1988) The need for common perspectives in the development and use of animal models for age-related cognitive and neurodegenerative disorders Neurobiol Aging 9:445–451

    CAS  PubMed  Google Scholar 

  194. Toledano A, Rivas L, Rodríguez-Arellano JJ (1993) Morphological and histochemical characteristics of mitochondria during senile involution of the cerebellar cortex. Bull Molec Biol Med 18:1–23

    CAS  Google Scholar 

  195. Toledano A, Barca MA, Moradillo I (1988) Mitochondrial dehydrogenases during sensescence of the cerebellar cortex. A comparative electron microscope study. Cell Molec Biol 34:175–189

    CAS  Google Scholar 

  196. Araujo DM, Lapchak PA, Meaney MJ, et al. (1990) Effects of aging on nicotinic and muscarinic autoreceptor function in the rat brain: Relationship to presynaptic cholinergic markers and binding sites. J Neurosci 10:3069–3078

    CAS  PubMed  Google Scholar 

  197. Wu CF, Bertorelli R, Sacconi M, et al. (1988) Decrease of brain acetylcholine release in aging freely-moving rats detected by microdialysis. Neurobiol Aging 9:357–361

    CAS  PubMed  Google Scholar 

  198. Fisher W, Chen KS, Gage FH, et al. (1991) Progressive decline in spacial learning and integrity of forebrain cholinergic neurons in rats during aging. Neurobiol Aging 13:9–23

    Google Scholar 

  199. Lee JM, Ross ER, Gower A, et al. (1994) Spatial leaming deficits in the aged rat: Neuroanatomical and neuro¬chemical correlates. Brain Res Bull 33:489–500

    CAS  PubMed  Google Scholar 

  200. Weber JT (2007) Experimental models of repetitive brain injuries. Prog Brain Res 161:253–261

    PubMed  Google Scholar 

  201. Inestrosa NC, Reyes AE, Chacón MA, et al. (2005) Human-like rodent amyloid-beta-peptide determines Alzheimer pathology in aged wild-type Octodon degu. Neurobiol Aging 26:1023–1028

    CAS  PubMed  Google Scholar 

  202. Glenn MJ, Lehmann H, Mumby DG, Woodside B (2005) Differential fos expression following aspiration, electrolytic, or excitotoxic lesions of the perirhinal cortex in rats. Behav Neurosci 19:806–813

    Google Scholar 

  203. Hernández-Ortega K, Ferrera P, Arias C (2007) Sequential expresión of cell-cycle regulators and Alzheimer’s diseases-related proteins in entorhinal cortex after hippocampal excitotoxis damage. J Neurosci Res 85:1744–1751

    PubMed  Google Scholar 

  204. Glenn MJ, Nesbitt C, Mumby DG (2003) Perirhinal cortex lesions produce variable patterns of retrograde amnesia in rats. Behav Brain Res 41:183–193

    Google Scholar 

  205. Blaker WD, Goodwin SD (1987) Biochemical and behavioral effects of intrahippocampal AF64A in rats. Pharmacol Biochem Behav 28:157–163

    CAS  PubMed  Google Scholar 

  206. Mouton PR, Arendash GW (1990) Atrophy of cholinergic neurons within the rat nucleus basalis magnocellularis following intracortical AF64A infusion. Neurosci Lett 111:52–57

    CAS  PubMed  Google Scholar 

  207. Heckers S, Ohtake T, Wiley RG, et al. (1994) Complete and selective cholinergic denervation of rat neocortex and hippocampus but not amygdala by an immunotoxin against the p75 NGF-receptor. J Neurosci 14:1271–1289

    CAS  PubMed  Google Scholar 

  208. Raymond JL, Lisberger SG, Mauk MI (1996) The cerebel¬lum: A neuronal learning machine. Science 272:1126–1131

    CAS  PubMed  Google Scholar 

  209. Gottwald B, Mihazlocic Z, Wilde B, et al. (2003) Does the cerebellum contribute to specific aspects of attention? Neuropsychologia 41:1452–1460

    PubMed  Google Scholar 

  210. Pavía J, Albrech J, Álvarez MI, et al. (2002) Repeat intracerebroventricular administration of β-amyloid 25–35 to rats decreases muscarinic receptors in cerebral cortex. Neurosci Lett 278:69–72

    Google Scholar 

  211. Chen L, Yamada K, Nabeshima T, Sokabe M (2006) Alpha7 Nicotinic acetylcholine receptor as a target to rescue deficit in hippocampal LTP induction in beta-amyloid infused rats. Neuropharmacology 50:254–268

    CAS  PubMed  Google Scholar 

  212. Yamada M, Chiba T, Sasabe J, et al. (2005) Implanted cannula-mediated repetitive administration of Abeta25–35 into the mouse cerebral ventricle effectively impairs spatial working memory. Behav Brain Res 164:139–146

    CAS  PubMed  Google Scholar 

  213. Li LY, Li JT, Wu QY, et al. (2008) Transplantation of NGF-gene-modified bone marrow stromal cells into a rat model of Alzheimer’ Disease. J Mol Neurosci 34:157–163

    PubMed  Google Scholar 

  214. Takata K, Kitamura Y, Yanagisawa D, et al. (2007) Microglial transplantation increases amyloid-beta clearance in Alzheimer model rats. FEBS Lett 581:475–478

    CAS  PubMed  Google Scholar 

  215. Holscher C, Gengler S, Gault VA, et al. (2007) Soluble beta-amyloid [25–35] reversibly impairs hippocampal synaptic plasticity and spatial learning. Eur J Pharmacol 561:85–90

    CAS  PubMed  Google Scholar 

  216. Coles B, Wilton LA, Good M, et al. (2008) Potassium channels in hippocampal neurones are absent in a transgenic but not in a chemical model of Alzheimer’s disease. Brain Res 1190:1–14

    CAS  PubMed  Google Scholar 

  217. Arendt TH, Bigl V, Schuyens MM (1989) Ethanol as a neurotoxin- A model of the syndrome of cholinergic deafferentation of the cortical mantle. Brain Dysfunct 2:169–180

    Google Scholar 

  218. Floyd EA, Young-Seigler AC, Ford BD, et al. (1997) Chronic ethanol ingestion produces cholinergic hypofunction in rat brain. Alcohol 14:93–98

    CAS  PubMed  Google Scholar 

  219. Fernandes PA, Ribeiro AM, Pereira RF, et al. (2002) Chronic ethanol intake and ageing effects on cortical and basal forebrain cholinergic parameters: Morphometric and biochemical studies. Addict Biol 7:29–36

    CAS  PubMed  Google Scholar 

  220. Walton JR (2007) An aluminum-based rat model for Alzheimer’s disease exhibits oxidative damage, inhibition of PP2A activity, hyper­phosphorylated tau, and granulovacuolar degeneration. J Inorg Biochem 101:1275–1284

    CAS  PubMed  Google Scholar 

  221. Bharathi I, Shamasundar NM, Sathyanarayana Rao TS, et al. (2006) A new insight on Al-maltolate-treated aged rabbit as Alzheim­er’s animal model. Brain Res Rev 52:275–292

    CAS  PubMed  Google Scholar 

  222. Chen LQ, Wei JS, Lei ZN, et al. (2005) Induction of Bcl-2 and Bax was related to hyperphosphorylation of tau and neuronal death induced by okadaic acid in rat brain. Anat Rec A Discov Mol Cell Evol Biol 287:1236–1245

    PubMed  Google Scholar 

  223. Yoon S, Choi J, Huh JW, et al. (2006) Calpain activation in okadaic-acid-induced neurodegeneration. Neuroreport 17:689–692

    CAS  PubMed  Google Scholar 

  224. Lee J, Hong H, Im J, et al. (2000) The formation of PHF-1 and SMI-31 positive dystrophic neurites in rat hippocampus following acute injection of okadaic acid. Neurosci Lett 282:49–52

    CAS  PubMed  Google Scholar 

  225. Tian Q, Lin ZQ, Wang XC, et al. (2004) Injection of okadaic acid into the meynert nucleus basalis of rat brain induces decreased acetylcholine level and spatial memory deficit. Neuroscience 126:277–284

    CAS  PubMed  Google Scholar 

  226. Craft TK, Mahoney JH, Devries AC, Sarter M (2005) Microsphere embolism-induced cortical cholinergic deafferentation and impairments in attentional performance. Eur J Neurosci 21:3117–3132

    PubMed  Google Scholar 

  227. Shibata M, Yamasaki N, Miyakawa T, et al. (2007) Selective impairment of working memory in a mouse model of chronic cerebral hypoperfusion. Stroke 38:2826–2832

    PubMed  Google Scholar 

  228. Ginestet L, Ferrario JE, Raisman-Vozari R, et al. (2007) Donepezil induces a cholinergic sprouting in basocortical degeneration. J Neurochem 102:434–440

    CAS  PubMed  Google Scholar 

  229. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, San Diego, CA/London

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the invaluable collaboration of Drs. L Rivas, MA Barca, I. Moradillo, and A. Toledano-Diaz for so many years in studying lesion-induced models of Alzheimer’s Dementia.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Toledano, A., Álvarez, M.I. (2011). Lesion-Induced Vertebrate Models of Alzheimer Dementia. In: De Deyn, P., Van Dam, D. (eds) Animal Models of Dementia. Neuromethods, vol 48. Humana Press. https://doi.org/10.1007/978-1-60761-898-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-898-0_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-897-3

  • Online ISBN: 978-1-60761-898-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics