Skip to main content

Zebrafish (Danio rerio) as a Model Organism for Dementia

  • Protocol
  • First Online:
Animal Models of Dementia

Part of the book series: Neuromethods ((NM,volume 48))

  • 1781 Accesses

Abstract

Zebrafish, a freshwater tropical fish, is a premiere model organism to study vertebrate development. Fast external development and transparency during embryogenesis allow for visual screening at the macroscopical and microscopical level, including visualization of organogenesis. High fecundity and short generation times facilitate genetic analyses. Zebrafish may be a particular powerful model for the study of human disease because many cellular processes are conserved throughout vertebrate evolution, including the corresponding disease genes. Finally, the ability to manipulate gene expression has broad usefulness in the study of modeling human disease, including dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wullimann MF, RB RH (1996) Neuroanatomy of the zebrafish brain; A topological atlas. Birkhauser Verlag, Basel, Switzerland

    Google Scholar 

  2. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  PubMed  CAS  Google Scholar 

  3. Haffter P, Granato M, Brand M, et al. (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    PubMed  CAS  Google Scholar 

  4. Driever W, Solnica-Krezel L, Schier AF, et al. (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46

    PubMed  CAS  Google Scholar 

  5. Amsterdam A, Hopkins N (2006) Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet 22:473–478

    Article  PubMed  CAS  Google Scholar 

  6. Lieschke GJ, Currie PD (2007) Animal models of human disease: Zebrafish swim into view. Nat Rev Genet 8:353–367

    Article  PubMed  CAS  Google Scholar 

  7. Amores A, Force A, Yan YL, et al. (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714

    Article  PubMed  CAS  Google Scholar 

  8. Postlethwait JH, Yan YL, Gates MA, et al. (1998) Vertebrate genome evolution and the zebrafish gene map. Nat Genet 18:345–349

    Article  PubMed  CAS  Google Scholar 

  9. Groth C, Nornes S, McCarty R, Tamme R, Lardelli M (2002) Identification of a second presenilin gene in zebrafish with similarity to the human Alzheimer’s disease gene presenilin2. Dev Genes Evol 212:486–490

    Article  PubMed  CAS  Google Scholar 

  10. Leimer U, Lun K, Romig H, et al. (1999) Zebrafish (Danio rerio) presenilin promotes aberrant amyloid beta-peptide production and requires a critical aspartate residue for its function in amyloidogenesis. Biochemistry 38:13602–13609

    Article  PubMed  CAS  Google Scholar 

  11. Nornes S, Groth C, Camp E, Ey P, Lardelli M (2003) Developmental control of Presenilin1 expression, endoproteolysis, and interaction in zebrafish embryos. Exp Cell Res 289:124–132

    Article  PubMed  CAS  Google Scholar 

  12. Musa A, Lehrach H, Russo VA (2001) Distinct expression patterns of two zebrafish homologues of the human APP gene during embryonic development. Dev Genes Evol 211:563–567

    Article  PubMed  CAS  Google Scholar 

  13. Shankaran SS, Capell A, Hruscha AT, et al. (2008) Missense mutations in the progranulin gene linked to frontotemporal lobar degeneration with ubiquitin-immunoreactive inclusions reduce progranulin production and secretion. J Biol Chem 283:1744–1753

    Article  PubMed  CAS  Google Scholar 

  14. Driever W, Fishman MC (1996) The zebrafish: Heritable disorders in transparent embryos. J Clin Invest 97:1788–1794

    Article  PubMed  CAS  Google Scholar 

  15. Fritz A, Rozowski M, Walker C, Westerfield M (1996) Identification of selected gamma-ray induced deficiencies in zebrafish using multiplex polymerase chain reaction. Genetics 144:1735–1745

    PubMed  CAS  Google Scholar 

  16. Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S, Hopkins N (2004) Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci U S A 101:12792–12797

    Article  PubMed  CAS  Google Scholar 

  17. Chen W, Burgess S, Golling G, Amsterdam A, Hopkins N (2002) High-throughput selection of retrovirus producer cell lines leads to markedly improved efficiency of germ line-transmissible insertions in zebra fish. J Virol 76:2192–2198

    Article  PubMed  CAS  Google Scholar 

  18. Amsterdam A, Burgess S, Golling G, et al. (1999) A large-scale insertional mutagenesis screen in zebrafish. Genes Dev 13:2713–2724

    Article  PubMed  CAS  Google Scholar 

  19. Wienholds E, Plasterk RH (2004) Target-selected gene inactivation in zebrafish. Methods Cell Biol 77:69–90

    Article  PubMed  CAS  Google Scholar 

  20. Draper BW, Morcos PA, Kimmel CB (2001) Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: A quantifiable method for gene knockdown. Genesis 30:154–156

    Article  PubMed  CAS  Google Scholar 

  21. Stemple DL (2004) TILLING-a high-throughput harvest for functional genomics. Nat Rev Genet 5:145–150

    Article  PubMed  CAS  Google Scholar 

  22. Gaiano N, Allende M, Amsterdam A, Kawakami K, Hopkins N (1996) Highly efficient germ-line transmission of proviral insertions in zebrafish. Proc Natl Acad Sci U S A 93:7777–7782

    Article  PubMed  CAS  Google Scholar 

  23. Linney E, Hardison NL, Lonze BE, Lyons S, DiNapoli L (1999) Transgene expression in zebrafish: A comparison of retroviral-vector and DNA-injection approaches. Dev Biol 213:207–216

    Article  PubMed  CAS  Google Scholar 

  24. Fadool JM, Hartl DL, Dowling JE (1998) Transposition of the mariner element from Drosophila mauritiana in zebrafish. Proc Natl Acad Sci U S A 95:5182–5186

    Article  PubMed  CAS  Google Scholar 

  25. Kawakami K, Amsterdam A, Shimoda N, et al. (2000) Proviral insertions in the zebrafish hagoromo gene, encoding an F-box/WD40-repeat protein, cause stripe pattern anomalies. Curr Biol 10:463–466

    Article  PubMed  CAS  Google Scholar 

  26. Raz E, van Luenen HG, Schaerringer B, Plasterk RH, Driever W (1998) Transposition of the nematode Caenorhabditis elegans Tc3 element in the zebrafish Danio rerio. Curr Biol 8:82–88

    Article  PubMed  CAS  Google Scholar 

  27. Jesuthasan S, Subburaju S (2002) Gene transfer into zebrafish by sperm nuclear transplantation. Dev Biol 242:88–95

    Article  PubMed  CAS  Google Scholar 

  28. Udvadia AJ, Linney E (2003) Windows into development: Historic, current, and future perspectives on transgenic zebrafish. Dev Biol 256:1–17

    Article  PubMed  CAS  Google Scholar 

  29. Thermes V, Grabher C, Ristoratore F, et al. (2002) I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech Dev 118:91–98

    Article  PubMed  CAS  Google Scholar 

  30. Hickman-Davis JM, Davis IC. Transgenic mice (2006) Paediatr Respir Rev 7:49–53

    Article  PubMed  Google Scholar 

  31. Fan L, Crodian J, Collodi P (2004) Production of zebrafish germline chimeras by using cultured embryonic stem (ES) cells. Methods Cell Biol 77:113–119

    Article  PubMed  CAS  Google Scholar 

  32. Fan L, Moon J, Crodian J, Collodi P (2006) Homologous recombination in zebrafish ES cells. Transgenic Res 15:21–30

    Article  PubMed  CAS  Google Scholar 

  33. Heasman J (2002) Morpholino oligos: Making sense of antisense? Dev Biol 243:209–214

    Article  PubMed  CAS  Google Scholar 

  34. Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216–220

    Article  PubMed  CAS  Google Scholar 

  35. Sumanas S, Larson JD (2002) Morpholino phosphorodiamidate oligonucleotides in zebrafish: A recipe for functional genomics? Brief Funct Genomic Proteomic 1:239–256

    Article  PubMed  CAS  Google Scholar 

  36. Granato M, van Eeden FJ, Schach U, et al. (1996) Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 123:399–413

    PubMed  CAS  Google Scholar 

  37. Brockerhoff SE, Hurley JB, Janssen-Bienhold U, Neuhauss SC, Driever W, Dowling JE (1995) A behavioral screen for isolating zebrafish mutants with visual system defects. Proc Natl Acad Sci U S A 92:10545–10549

    Article  PubMed  CAS  Google Scholar 

  38. Brockerhoff SE, Hurley JB, Niemi GA, Dowling JE (1997) A new form of inherited red-blindness identified in zebrafish. J Neurosci 17:4236–4242

    PubMed  CAS  Google Scholar 

  39. Burgess HA, Granato M (2007) Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 210:2526–2539

    Article  PubMed  Google Scholar 

  40. Giacomini NJ, Rose B, Kobayashi K, Guo S (2006) Antipsychotics produce locomotor impairment in larval zebrafish. Neurotoxicol Teratol 28:245–250

    Article  PubMed  CAS  Google Scholar 

  41. Williams FE, White D, Messer WS (2002) A simple spatial alternation task for assessing memory function in zebrafish. Behav Processes 58:125–132

    Article  PubMed  Google Scholar 

  42. Saverino C, Gerlai R (2008) The social zebrafish: Behavioral responses to conspecific, heterospecific, and computer animated fish. Behav Brain Res 191:77–87

    Article  PubMed  Google Scholar 

  43. Al-Imari L, Gerlai R (2008) Sight of conspecifics as reward in associative learning in zebrafish (Danio rerio). Behav Brain Res 189:216–219

    Article  PubMed  Google Scholar 

  44. Nornes S, Newman M, Verdile G, et al. (2008) Interference with splicing of Presenilin transcripts has potent dominant negative effects on Presenilin activity. Hum Mol Genet 17:402–412

    Article  PubMed  CAS  Google Scholar 

  45. Lee JA, Cole GJ (2007) Generation of transgenic zebrafish expressing green fluorescent protein under control of zebrafish amyloid precursor protein gene regulatory elements. Zebrafish 4:277–286

    Article  PubMed  CAS  Google Scholar 

  46. Tomasiewicz HG, Flaherty DB, Soria JP, Wood JG (2002) Transgenic zebrafish model of neurodegeneration. J Neurosci Res 70:734–745

    Article  PubMed  CAS  Google Scholar 

  47. Bai Q, Garver JA, Hukriede NA, Burton EA (2007) Generation of a transgenic zebrafish model of Tauopathy using a novel promoter element derived from the zebrafish eno2 gene. Nucleic Acids Res 35:6501–6516

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Willemsen, R., Padje, S.v., van Swieten, J.C., Oostra, B.A. (2011). Zebrafish (Danio rerio) as a Model Organism for Dementia. In: De Deyn, P., Van Dam, D. (eds) Animal Models of Dementia. Neuromethods, vol 48. Humana Press. https://doi.org/10.1007/978-1-60761-898-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-898-0_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-897-3

  • Online ISBN: 978-1-60761-898-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics