Skip to main content

Caenorhabditis elegans as a Model Organism for Dementia

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 48))

Abstract

The free living nematode worm Caenorhabditis elegans (C. elegans) has been extensively studied by biological, agricultural, and medical scientists for over 40 years. The animal has several characteristics that make it useful as a model organism. For example, the nematodes are transparent, which allows study of embryonic development and gene expression in living animals under the microscope. They also have a very short life cycle of about 3 days and a relatively short lifespan of about 3 weeks, which allow genetic dissection of the mechanisms that affect aging and ultimately determine lifespan. In addition, the mechanism of gene silencing by RNA interference has been discovered in C. elegans and has been developed into a potent reverse genetic tool.

Because of the strong conservation of molecular genetic pathways between C. elegans and mammals, it represents a powerful addition to the small animal model repertoire. Genetic mechanisms in human disease, such as Alzheimer’s disease, have been elucidated in C. elegans, indicating its potential as a model for human dementia. Here, we will discuss the existing models, and what they have revealed about the genetic pathways and pathogenesis of different forms of dementia. We will also describe how to set up forward and reverse genetic screens in C. elegans, which can be used to identify additional genes and processes involved in dementia.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Brenner S (v1974) The genetics of Caenorhab­ditis elegans. Genetics 77(1):71–94

    PubMed  CAS  Google Scholar 

  2. Byerly L, Cassada RC, Russell RL (1976) The life cycle of the nematode Caenorhabditis elegans. I. Wild-type growth and reproduction. Dev Biol 51(1):23–33

    Article  PubMed  CAS  Google Scholar 

  3. Lewis JA, Fleming JT (1995) Basic culture methods. Methods Cell Biol 48:3–29

    Article  PubMed  CAS  Google Scholar 

  4. Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100(1):64–119

    Article  PubMed  CAS  Google Scholar 

  5. Wood WB (1988) Determination of pattern and fate in early embryos of Caenorhabditis elegans. Dev Biol (N Y 1985) 5:57–78

    CAS  Google Scholar 

  6. White JG, Southgate E, Thomson JN, Brenner S (1986)The structure of the nervous systemn of the nematode Caenorhabditis elegans. Phil Trans Royal Soc London Series B, Biol Sci 314:1–340

    Google Scholar 

  7. Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56(1): 110–156

    Article  PubMed  CAS  Google Scholar 

  8. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  PubMed  CAS  Google Scholar 

  9. Tabara H, Grishok A, Mello CC (1998) RNAi in C. elegans: Soaking in the genome sequence. Science 282(5388):430–431

    Article  PubMed  CAS  Google Scholar 

  10. Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395(6705):854

    Article  PubMed  CAS  Google Scholar 

  11. Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263(1–2):103–112

    Article  PubMed  CAS  Google Scholar 

  12. Kamath RS, Ahringer J (2003) Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30(4):313–321

    Article  PubMed  CAS  Google Scholar 

  13. Kamath RS, Fraser AG, Dong Y, et al. (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421(6920):231–237

    Article  PubMed  CAS  Google Scholar 

  14. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8(2):101–112

    Article  PubMed  CAS  Google Scholar 

  15. Levitan D, Greenwald I (1995) Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377(6547):351–354

    Article  PubMed  CAS  Google Scholar 

  16. Li X, Greenwald I (1997) HOP-1, a Caenorhabditis elegans presenilin, appears to be functionally redundant with SEL-12 presenilin and to facilitate LIN-12 and GLP-1 signaling. Proc Natl Acad Sci U S A 94(22): 12204–12209

    Article  PubMed  CAS  Google Scholar 

  17. Levitan D, Doyle TG, Brousseau D, et al. (1996) Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. Proc Natl Acad Sci U S A 93(25): 14940–14944

    Article  PubMed  CAS  Google Scholar 

  18. Lakowski B, Eimer S, Gobel C, Bottcher A, Wagler B, Baumeister R (2003) Two suppressors of sel-12 encode C2H2 zinc-finger proteins that regulate presenilin transcription in Caenorhabditis elegans. Development 130(10): 2117–2128

    Article  PubMed  CAS  Google Scholar 

  19. Jarriault S, Greenwald I (2002) Suppressors of the egg-laying defective phenotype of sel-12 presenilin mutants implicate the CoREST corepressor complex in LIN-12/Notch signaling in C. elegans. Genes Dev 16(20):2713–2728

    Article  PubMed  CAS  Google Scholar 

  20. Hornsten A, Lieberthal J, Fadia S, et al. (2007) APL-1, a Caenorhabditis elegans protein related to the human beta-amyloid precursor protein, is essential for viability. Proc Natl Acad Sci U S A 104(6):1971–1976

    Article  PubMed  CAS  Google Scholar 

  21. Sakaguchi-Nakashima A, Meir JY, Jin Y, Matsumoto K, Hisamoto N (2007) LRK-1, a C. elegans PARK8-related kinase, regulates axonal-dendritic polarity of SV proteins. Curr Biol 17(7):592–598

    Article  PubMed  CAS  Google Scholar 

  22. Schmidt E, Seifert M, Baumeister R (2007) Caenorhabditis elegans as a model system for Parkinson’s disease. Neurodegener Dis 4(2–3):199–217

    Article  PubMed  Google Scholar 

  23. Springer W, Hoppe T, Schmidt E, Baumeister R (2005) A Caenorhabditis elegans Parkin mutant with altered solubility couples alpha-synuclein aggregation to proteotoxic stress. Hum Mol Genet 14(22):3407–3423

    Article  PubMed  CAS  Google Scholar 

  24. Wu Y, Wu Z, Butko P, et al. (2006) Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J Neurosci 26(50):13102–13113

    Article  PubMed  CAS  Google Scholar 

  25. Link CD (1995) Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci U S A 92(20):9368–9372

    Article  PubMed  CAS  Google Scholar 

  26. Holzenberger M, Dupont J, Ducos B, et al. (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421(6919):182–187

    Article  PubMed  CAS  Google Scholar 

  27. Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313(5793):1604–1610

    Article  PubMed  CAS  Google Scholar 

  28. Zarranz JJ, Alegre J, Gomez-Esteban JC, et al. (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173

    Article  PubMed  CAS  Google Scholar 

  29. Cabin DE, Shimazu K, Murphy D, et al. (2002) Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci 22(20):8797–8807

    PubMed  CAS  Google Scholar 

  30. Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC (2005) Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123(3): 383–396

    Article  PubMed  CAS  Google Scholar 

  31. Larsen KE, Schmitz Y, Troyer MD, et al. (2006) Alpha-synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis. J Neurosci 26(46):11915–11922

    Article  PubMed  CAS  Google Scholar 

  32. Murphy DD, Rueter SM, Trojanowski JQ, Lee VM (2000) Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20(9):3214–3220

    PubMed  CAS  Google Scholar 

  33. Morley JF, Brignull HR, Weyers JJ, Morimoto RI (2002) The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci U S A 99(16):10417–10422

    Article  PubMed  Google Scholar 

  34. Satyal SH, Schmidt E, Kitagawa K, et al. (2000) Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc Natl Acad Sci U S A 97(11):5750–5755

    Article  PubMed  CAS  Google Scholar 

  35. van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, Nollen EA (2008) C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet 4(3):e1000027

    Article  PubMed  Google Scholar 

  36. Kraemer BC, Zhang B, Leverenz JB, Thomas JH, Trojanowski JQ, Schellenberg GD (2003) Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc Natl Acad Sci U S A 100(17):9980–9985

    Article  PubMed  CAS  Google Scholar 

  37. Kraemer BC, Burgess JK, Chen JH, Thomas JH, Schellenberg GD (2006) Molecular pathways that influence human tau-induced pathology in Caenorhabditis elegans. Hum Mol Genet 15(9):1483–1496

    Article  PubMed  CAS  Google Scholar 

  38. Praitis V, Casey E, Collar D, Austin J (2001) Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157(3):1217–1226

    PubMed  CAS  Google Scholar 

  39. Wilm T, Demel P, Koop HU, Schnabel H, Schnabel R (1999) Ballistic transformation of Caenorhabditis elegans. Gene 229(1–2): 31–35

    Article  PubMed  CAS  Google Scholar 

  40. Jorgensen EM, Mango SE (2002) The art and design of genetic screens: Caenorhabditis elegans. Nat Rev Genet 3(5):356–369

    Article  PubMed  CAS  Google Scholar 

  41. Koch R, van Luenen HG, van der HM, Thijssen KL, Plasterk RH (2000) Single nucleotide polymorphisms in wild isolates of Caenorhabditis elegans. Genome Res 10(11):1690–1696

    Article  PubMed  CAS  Google Scholar 

  42. Jansen G, Hazendonk E, Thijssen KL, Plasterk RH (1997) Reverse genetics by chemical mutagenesis in Caenorhabditis elegans. Nat Genet 17(1):119–121

    Article  PubMed  CAS  Google Scholar 

  43. Zwaal RR, Broeks A, van MJ, Groenen JT, Plasterk RH (1993) Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank. Proc Natl Acad Sci U S A 90(16): 7431–7435

    Article  PubMed  CAS  Google Scholar 

  44. Carroll D, Beumer KJ, Morton JJ, Bozas A, Trautman JK (2008) Gene targeting in Drosophila and Caenorhabditis elegans with zinc-finger nucleases. Methods Mol Biol 435:63–77

    Article  PubMed  CAS  Google Scholar 

  45. Morton J, Davis MW, Jorgensen EM, Carroll D (2006) Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc Natl Acad Sci U S A 103(44):16370–16375

    Article  PubMed  CAS  Google Scholar 

  46. Ashrafi K, Chang FY, Watts JL, et al. (2003) Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421(6920):268–272

    Article  PubMed  CAS  Google Scholar 

  47. Rual JF, Ceron J, Koreth J, et al. (2004) Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res 14(10B):2162–2168

    Article  PubMed  CAS  Google Scholar 

  48. Boutros M, Ahringer J (2008) The art and design of genetic screens: RNA interference. Nat Rev Genet 9(7):554–566

    Article  PubMed  CAS  Google Scholar 

  49. Nollen EA, Garcia SM, van HG, et al. (2004) Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc Natl Acad Sci U S A 101(17):6403–6408

    Article  PubMed  CAS  Google Scholar 

  50. van Haaften G., Vastenhouw NL, Nollen EA, Plasterk RH, Tijsterman M (2004) Gene interactions in the DNA damage-response pathway identified by genome-wide RNA-interference analysis of synthetic lethality. Proc Natl Acad Sci U S A 101(35):12992–12996

    Article  PubMed  CAS  Google Scholar 

  51. Eimer S, Lakowski B, Donhauser R, Baumeister R (2002) Loss of spr-5 bypasses the requirement for the C.elegans presenilin sel-12 by derepressing hop-1. EMBO J 21(21):5787–5796

    Article  PubMed  CAS  Google Scholar 

  52. Wen C, Levitan D, Li X, Greenwald I (2000) spr-2, a suppressor of the egg-laying defect caused by loss of sel-12 presenilin in Caenorhabditis elegans, is a member of the SET protein subfamily. Proc Natl Acad Sci U S A 97(26):14524–14529

    Article  PubMed  CAS  Google Scholar 

  53. van Haaften G, Romeijn R, Pothof J, et al. (2006) Identification of conserved pathways of DNA-damage response and radiation protection by genome-wide RNAi. Curr Biol 16(13):1344–1350

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank J. Senior for editing the manuscript and ZonMw (NWO), Research Institute for Diseases in the Elderly (RIDE), for the funding.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Van Ham, T.J., Nollen, E.A.A. (2011). Caenorhabditis elegans as a Model Organism for Dementia. In: De Deyn, P., Van Dam, D. (eds) Animal Models of Dementia. Neuromethods, vol 48. Humana Press. https://doi.org/10.1007/978-1-60761-898-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-898-0_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-897-3

  • Online ISBN: 978-1-60761-898-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics