Enzyme Stabilization via Bio-templated Silicification Reactions

  • Glenn R. Johnson
  • Heather R. Luckarift
Part of the Methods in Molecular Biology book series (MIMB, volume 679)


Effective entrapment of enzymes in solid-phase materials is critical to their practical application. The entrapment generally stabilizes biological activity compared to soluble molecules and the material simplifies catalyst integration significantly. A silica sol-gel process based upon biological mechanisms of inorganic material formation (biomineralization) supports protein immobilization reactions within minutes. The material has high protein binding capacity and the catalytic activity of the enzyme is retained. We have demonstrated that both oligopeptides and selected proteins will mediate the biomineralization of silica and allow effective co-encapsulation of other proteins present in the reaction mixture. The detailed methods described here provide a simple and effective approach for molecular biologists, biochemists, and bioengineers to create stable, solid-phase biocatalysts that may be integrated within sensors, synthetic processes, reactive barriers, energy conversion materials, and other biotechnology concepts.

Key words

Lysozyme Biomineralization Silica Sol-gel Biosensor Biocatalysis Enzyme immobilization Butyrylcholinesterase Silicification 



The research related to the presented methods was supported by the Air Force Research Laboratory Materials Science Directorate, the Air Force Office of Scientific Research (Program Managers: Walt Kozumbo and Jennifer Gresham), and the Joint Science and Technology Office-Defense Threat Reduction Agency (Program Managers: Jennifer Becker and Stephen Lee).


  1. 1.
    Gill, I., and Ballesteros, A. (1998) Encapsulation of biologicals within silicate, siloxane, and hybrid sol gel polymers: an efficient and generic approach, J. Am. Chem. Soc. 120, 8587–8598.CrossRefGoogle Scholar
  2. 2.
    Mansur, H., Orefice, R., Vasconcelos, W., Lobato, Z., and Machado, L. (2005) Bio­material with chemically engineered surface for protein immobilization, J. Mater. Sci. Mater. Med. 16, 333–340.PubMedCrossRefGoogle Scholar
  3. 3.
    Dickey, F. H. (1955) Specific adsorption, J. Phys. Chem 59, 695–707.CrossRefGoogle Scholar
  4. 4.
    Braun, S., Rappoport, S., Zusman, R., Avnir, D., and Ottolenghi, M. (1990) Biochemically active sol-gel glasses: the trapping of enzymes, Mater. Lett. 10, 1–5.CrossRefGoogle Scholar
  5. 5.
    Brennan, J. (2007) Biofriendly sol-gel processing for the entrapment of soluble and membrane-bound proteins: toward novel solid-phase assays for high-throughput screening, Acc. Chem. Res. 40, 827–835.PubMedCrossRefGoogle Scholar
  6. 6.
    Baeuerlein, E. (2007) Handbook of biomineralization: biological aspects and structure formation, Vol. 2, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.CrossRefGoogle Scholar
  7. 7.
    Kröger, N., Deutzmann, R., and Sumper, M. (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation, Science 286, 1129–1132.PubMedCrossRefGoogle Scholar
  8. 8.
    Kröger, N., Lorenz, S., Brunner, E., and Sumper, M. (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis, Science 298, 584–586.PubMedCrossRefGoogle Scholar
  9. 9.
    Brott, L. L., Naik, R. R., Pikas, D. J., Kirkpatrick, S. M., Tomlin, D. W., Whitlock, P. W., Clarson, S. J., and Stone, M. O. (2001) Ultrafast holographic nanopatterning of biocatalytically formed silica, Nature 413, 291–293.PubMedCrossRefGoogle Scholar
  10. 10.
    Luckarift, H. R., Spain, J. C., Naik, R. R., and Stone, M. O. (2004) Enzyme immobilization in a biomimetic silica support, Nat. Biotechnol. 22, 211.PubMedCrossRefGoogle Scholar
  11. 11.
    Naik, R. R., Tomczak, M. M., Luckarift, H. R., Spain, J. C., and Stone, M. O. (2004) Entrapment of enzymes and nanoparticles using biomimetically synthesized silica, Chem. Comm. 1684–1685.Google Scholar
  12. 12.
    Betancor, L., and Luckarift, H. R. (2008) Bioinspired enzyme encapsulation for biocatalysis, Trends Biotechnol. 26, 566–572.PubMedCrossRefGoogle Scholar
  13. 13.
    Sigma-Aldrich. Personal communication.Google Scholar
  14. 14.
    Kröger, N., Deutzmann, R., and Sumper, M. (2001) Silica-precipitating peptides from diatoms. The chemical structure of silaffin-A from Cylindrotheca fusiformis, J. Biol. Chem. 276, 26066–26070.PubMedCrossRefGoogle Scholar
  15. 15.
    Kröger, N., Lorenz, S., Brunner, E., and Sumper, M. (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis, Science 298, 584–586.PubMedCrossRefGoogle Scholar
  16. 16.
    Luckarift, H. R., Dickerson, M. B., Sandhage, K. H., and Spain, J. C. (2006) Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania, Small 2, 640–643.PubMedCrossRefGoogle Scholar
  17. 17.
    Ivnitski, D., Artyushkova, K., Rincon, R. A., Atanassov, P., Luckarift, H. R., and Johnson, G. R. (2008) Entrapment of enzymes and carbon nanotubes in biologically synthesized silica: glucose oxidase-catalyzed direct electron transfer, Small 4, 357–364.PubMedCrossRefGoogle Scholar
  18. 18.
    Naik, R. R., Brott, L. L., Clarson, S. J., and Stone, M. O. (2002) Silica-precipitating peptides isolated from a combinatorial phage display peptide library, J. Nanosci. Nanotechnol. 2, 95–100.PubMedCrossRefGoogle Scholar
  19. 19.
    Eby, D. M., Farrington, K. E., and Johnson, G. R. (2008) Synthesis of bioinorganic antimicrobial peptide nanoparticles with potential therapeutic properties, Biomacromolecules 9, 2487–2494.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Glenn R. Johnson
    • 1
  • Heather R. Luckarift
    • 1
  1. 1.Microbiology and Applied Biochemistry, Air Force Research LaboratoryTyndall Air Force BasePanamaUSA

Personalised recommendations