Advertisement

Nanoporous Silica Glass for the Immobilization of Interactive Enzyme Systems

  • Andreas Buthe
  • Songtao Wu
  • Ping WangEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 679)

Abstract

Recent pursuit on utilization of nanoscale materials has manifested a variety of configurations of highly efficient enzymic biocatalyst systems for biotechnological applications. Nanoscale structures are particularly powerful in effecting multienzyme biocatalysis. Inherent properties of nanomaterials – primarily, the high surface area to volume ratio and atomic scale 3D configurations – enable higher enzyme loadings, microenvironment control surrounding enzyme molecules, regulation on mass transfer, and protein structural stabilization of the biocatalyst as compared to traditional immobilization systems. This chapter introduces one versatile nanoscale immobilization method via details demonstrated using the case of nanoporous silica glass (30 nm diameter) for the concomitant incorporation of lactate dehydrogenase (LDH), glucose dehydrogenase (GDH), and the cofactor (NADH).

Key words

Nanoporous carrier Mesoporous silica glass Covalent binding Coupling agent Cofactor regeneration NADH Lactate dehydrogenase Glucose dehydrogenase 

References

  1. 1.
    Ansorge-Schumacher M.B. (2008) Immobili­zation of biological catalysts. Handbook of Heterogeneous Catalysis (2nd Edition) 1, 644–55. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.Google Scholar
  2. 2.
    Hanefeld U., Gardossi L., Magner E. (2009) Understanding enzyme immobilization. Chem Soc Rev 38, 453–68.PubMedCrossRefGoogle Scholar
  3. 3.
    Reetz M.T., Tielmann P., Wiesenhoefer W., Koenen W., Zonta A. (2003) Second generation sol-gel encapsulated lipases: robust heterogeneous biocatalysts. Adv Synth Catal 345, 717–28.CrossRefGoogle Scholar
  4. 4.
    Wang P. (2009) Multi-scale features in recent development of enzymic biocatalyst systems. Appl Biochem Biotechnol 152, 343–52.PubMedCrossRefGoogle Scholar
  5. 5.
    Wang P. (2006) Nanoscale biocatalyst systems. Curr Opin Biotechnol 17, 574–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Kim J., Grate J.W., Wang P. (2008) Nano­biocatalysis and its potential applications. Trends Biotechnol 26, 639–46.PubMedCrossRefGoogle Scholar
  7. 7.
    El-Zahab B., Jia H., Wang P. (2004) Enabling multienzyme biocatalysis using nanoporous materials. Biotechnol Bioeng 87, 178–83.PubMedCrossRefGoogle Scholar
  8. 8.
    Wang P., Dai S., Waezsada S.D., Tsao A.Y., Davison B.H. (2001) Enzyme stabilization by covalent binding in nanoporous sol-gel glass for nonaqueous biocatalysis. Biotechnol Bioeng 74, 249–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Yi Y., Kermasha S., Neufeld R. (2008) Nanoporous sol-gel supports enzymatic hydrolysis of chlorophyll in organic media. ACS Symp Ser 986, 199–213.CrossRefGoogle Scholar
  10. 10.
    Weetall H. (1993) The activation of inorganic carriers by silanization. Biosens Bioelectron 8, x–xi.CrossRefGoogle Scholar
  11. 11.
    Liu W., Zhang S., Wang P. (2009) Nanoparticle-supported multi-enzyme biocatalysis with in situ cofactor regeneration. J Biotechnol 139, 102–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Liu W., Wang P. (2007) Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol Adv 25, 369–84.PubMedCrossRefGoogle Scholar
  13. 13.
    El-Zahab B., Gonzalez D., Wang P. (2004) Dendrimer-supported multienzymatic biocatalysts with in situ cofactor regeneration. Abstracts of Papers, 228th ACS National Meeting, PMSE-037, Philadelphia, PA.Google Scholar
  14. 14.
    Aldercreutz P. (1996) Cofactor regeneration in biocatalysis in organic media. Biocatalysis Biotransformation 14, 1–30.CrossRefGoogle Scholar
  15. 15.
    Andrews B.A., Head D.M., Dunthorne P., Asenjo J.A. (1990) PEG activation and ligand binding for the affinity partitioning of proteins in aqueous two-phase systems. Biotechnol Tech 4, 49–4.CrossRefGoogle Scholar
  16. 16.
    Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–54.PubMedCrossRefGoogle Scholar
  17. 17.
    Roda A., Sabatini L., Barbieri A., Guardigli M., Locatelli M., Violante F.S., Rovati L.C., Persiani S. (2006) Development and validation of a sensitive HPLC-ESI-MS/MS method for the direct determination of glucosamine in human plasma. J Chromatogr , B: Analyt Technol Biomed Life Sci 844, 119–26.CrossRefGoogle Scholar
  18. 18.
    Kapustka L.A., Annala A.E., Swanson W.C. (1981) The peroxidase-glucose oxidase system: a new method to determine glucose liberated by carbohydrate degrading soil enzymes. Plant Soil 63, 487–90.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Bioproducts and Biosystems EngineeringUniversity of MinnesotaSt. PaulUSA

Personalised recommendations