Skip to main content

Lipase Activation and Stabilization in Room-Temperature Ionic Liquids

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 679))

Abstract

Widespread interest in the use of room temperature ionic liquids (RTILs) as solvents in anhydrous biocatalytic reactions has largely been met with underwhelming results. Enzymes are frequently inactivated in RTILs as a result of the influence of solvent on the enzyme’s microenvironment, be it through interacting with the enzyme or enzyme-bound water molecules. The purpose of this chapter is to present a rational approach to mediate RTIL–enzyme interactions, which is essential if we are to realize the advantages of RTILs over conventional solvents for biocatalysis in full. The underlying premise for this approach is the stabilization of enzyme structure via multipoint covalent immobilization within a polyurethane foam matrix. Additionally, the approach entails the use of salt hydrates to control the level of hydration of the immobilized enzyme, which is critical to the activation of enzymes in nonaqueous media. Although lipase is used as a model enzyme, this approach may be effective in activating and stabilizing virtually any enzyme in RTILs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Brennecke, J. F. and Maginn, E. J. (2001) Ionic liquids: innovative fluids for chemical processing, AIChE J 47, 2384–2389.

    Article  CAS  Google Scholar 

  2. Yang, Z. and Pan, W. (2005) Ionic liquids: green solvents for nonaqueous biocatalysis, Enzyme Microb Technol 37, 19–28.

    Article  CAS  Google Scholar 

  3. van Rantwijk, F. and Sheldon, R. A. (2007) Biocatalysis in ionic liquids, Chem Rev 107, 2757–2785.

    Article  PubMed  Google Scholar 

  4. Roosen, C., Muller, P., and Greiner, L. (2008) Ionic liquids in biotechnology: applications and perspectives for biotransformations, Appl Microbiol Biotechnol 81, 607–614.

    Article  PubMed  CAS  Google Scholar 

  5. Kaar, J. L., Jesionowski, A. M., Berberich, J. A., Moulton, R., and Russell, A. J. (2003) Impact of ionic liquid physical properties on lipase activity and stability, J Am Chem Soc 125, 4125–4131.

    Article  PubMed  CAS  Google Scholar 

  6. Micaêlo, N. M. and Soares, C. M. (2008) Protein structure and dynamics in ionic liquids. Insights from molecular dynamics simulation studies, J Phys Chem B 112, 2566–2572.

    Article  PubMed  Google Scholar 

  7. Halling, P. J. (1994) Thermodynamic predictions for biocatalysis in nonconventional media: theory, tests, and recommendations for experimental design and analysis, Enzyme Microb Technol 16, 178–206.

    Article  PubMed  CAS  Google Scholar 

  8. Halling, P. J. (2004) What can we learn by studying enzymes in non-aqueous media? Philos Trans R Soc Lond B Biol Sci 359, 1287–1296; discussion 1296–1287, 1323–1288.

    Article  PubMed  CAS  Google Scholar 

  9. Nakashima, K., Maruyama, T., Kamiya, N., and Goto, M. (2006) Homogeneous enzymatic reactions in ionic liquids with poly(ethylene glycol)-modified subtilisin, Org Biomol Chem 4, 3462–3467.

    Article  PubMed  CAS  Google Scholar 

  10. Berberich, J. A., Kaar, J. L., and Russell, A. J. (2003) Use of salt hydrate pairs to control water activity for enzyme catalysis in ionic liquids, Biotechnol Prog 19, 1029–1032.

    Article  PubMed  CAS  Google Scholar 

  11. Lejeune, K. E., Mesiano, A. J., Bower, S. B., Grimsley, J. K., Wild, J. R., and Russell, A. J. (1997) Dramatically stabilized phosphotriesterase-polymers for nerve agent degradation, Biotechnol Bioeng 54, 105–114.

    Article  PubMed  CAS  Google Scholar 

  12. Gordon, R. K., Feaster, S. R., Russell, A. J., LeJeune, K. E., Maxwell, D. M., Lenz, D. E., Ross, M., and Doctor, B. P. (1999) Organophosphate skin decontamination using immobilized enzymes, Chem Biol Interact 119-120, 463–470.

    Article  PubMed  Google Scholar 

  13. LeJeune, K. E., Swers, J. S., Hetro, A. D., Donahey, G. P., and Russell, A. J. (1999) Increasing the tolerance of organophosphorus hydrolase to bleach, Biotechnol Bioeng 64, 250–254.

    Article  PubMed  CAS  Google Scholar 

  14. Gill, I. and Ballesteros, A. (2000) Bioencap­sulation within synthetic polymers (Part 2): non-sol-gel protein-polymer biocomposites, Trends Biotechnol 18, 469–479.

    Article  PubMed  CAS  Google Scholar 

  15. Drevon, G. F., Hartleib, J., Scharff, E., Ruterjans, H., and Russell, A. J. (2001) Thermoinactivation of diisopropylfluorophosphatase-containing polyurethane polymers, Biomacromolecules 2, 664–671.

    Article  PubMed  CAS  Google Scholar 

  16. Drevon, G. F., Danielmeier, K., Federspiel, W., Stolz, D. B., Wicks, D. A., Yu, P. C., and Russell, A. J. (2002) High-activity enzyme-polyurethane coatings, Biotechnol Bioeng 79, 785–794.

    Article  PubMed  CAS  Google Scholar 

  17. Vasudevan, P. T., Lopez-Cortes, N., Caswell, H., Reyes-Duarte, D., Plou, F. J., Ballesteros, A., Como, K., and Thomson, T. (2004) A novel hydrophilic support, CoFoam, for enzyme immobilization, Biotechnol Lett 26, 473–477.

    Article  PubMed  CAS  Google Scholar 

  18. Burrell, A. K., Del Sesto, R. E., Baker, S. N., McCleskey, T. M., and Baker, G. A. (2007) The large scale synthesis of pure imidazolium and pyrrolidinium ionic liquids, Green Chem 9, 449–454.

    Article  CAS  Google Scholar 

  19. Park, S. and Kazlauskas, R. J. (2001) Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio- and regioselective acylations, J Org Chem 66, 8395–8401.

    Article  PubMed  CAS  Google Scholar 

  20. Lee, S. H., Ha, S. H., Lee, S. B., and Koo, Y. M. (2006) Adverse effect of chloride impurities on lipase-catalyzed transesterifications in ionic liquids, Biotechnol Lett 28, 1335–1339.

    Article  PubMed  CAS  Google Scholar 

  21. Lejeune, K. E. and Russell, A. J. (1996) Covalent binding of a nerve agent hydrolyzing enzyme within polyurethane foams, Biotechnol Bioeng 51, 450–457.

    Article  PubMed  CAS  Google Scholar 

  22. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  23. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid, Anal Biochem 150, 76–85.

    Article  PubMed  CAS  Google Scholar 

  24. Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., and Gray, T. (1995) How to measure and predict the molar absorption coefficient of a protein, Protein Sci 4, 2411–2423.

    Article  PubMed  CAS  Google Scholar 

  25. Halling, P. J. (1992) Salt hydrates for water activity control with biocatalysts in organic media, Biotechnol Tech 6, 271–276.

    Article  CAS  Google Scholar 

  26. Zacharis, E., Omar, I. C., Partridge, J., Robb, D. A., and Halling, P. J. (1997) Selection of salt hydrate pairs for use in water control in enzyme catalysis in organic solvents, Biotechnol Bioeng 55, 367–374.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by SACHEM Inc. and by a research grant from the Environmental Protection Agency (R-82813101-0) to Alan J. Russell, to whom I am grateful for support, both financial and scientific. I am thankful to Jason A. Berberich for technical advice and helpful discussion on all aspects of this work. I also wish to thank Jason A. Berberich and Rick R. Koepsel for their critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel L. Kaar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kaar, J.L. (2011). Lipase Activation and Stabilization in Room-Temperature Ionic Liquids. In: Minteer, S. (eds) Enzyme Stabilization and Immobilization. Methods in Molecular Biology, vol 679. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-895-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-895-9_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-894-2

  • Online ISBN: 978-1-60761-895-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics