Skip to main content

Enzyme–Nanoparticle Conjugates for Biomedical Applications

  • Protocol
  • First Online:
Enzyme Stabilization and Immobilization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 679))

Abstract

Enzymes hold a great promise as therapeutic agents because of their unique specificity and high level of activity. Yet, clinically important enzyme drugs are for less common than conventional low molecular weight drugs due to a number of disadvantages. Most important among these are poor stability, potential immunogenicity, and potential systemic toxicity. Recent developments in synthesis and characterization of nanoparticles and exciting novel properties of some classes of nanomaterials have boosted interest in the potential use of nanoparticles as carriers of enzyme drugs. In certain cases, use of enzymes attached to nanoparticles can help to overcome some of the above problems and improve the prospects of clinical applications of enzyme drugs. Here, we review recent data on the use of nanoparticles as carriers for several clinically important enzyme drugs and discuss advantages and potential limitations of such constructs. While promising preliminary results were obtained with regard to their performance in vitro and in some animal models, further investigations and clinical trials, as well as addressing regulatory issues, are warranted to make these delivery systems suitable for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Mumtaz and B. K. Bachhawat, Enzyme engineering and its application in lysosomal storage disease, Pure and Applied Chemistry 64 (1992), no. 8, 1055–1060.

    Article  CAS  Google Scholar 

  2. V. P. Torchilin, Drug targeting, European Journal of Pharmaceutical Science 11 (2000), no. 2, S81–S91.

    Article  CAS  Google Scholar 

  3. Y. Takakura and M. Hashida, Macromolecular carrier systems for targeted drug delivery: Pharmacokinetic considerations on biodistribution, Pharmaceutical Research 13 (1996), no. 6, 820–831.

    Article  PubMed  CAS  Google Scholar 

  4. J. Cassidy and A. G. Schätzlein, Tumour-targeted drug and gene delivery: Principles and concepts, Expert Reviews in Molecular Medicine 6 (2004), no. 19, 1–17.

    Article  PubMed  Google Scholar 

  5. B. H. Biela, L. A. Khawli, P. Hu and A. L. Epstein, Chimeric TNT-3/human beta-glucuronidase fusion proteins for antibody-directed enzyme prodrug therapy (ADEPT), Cancer Biotherapy & Radiopharmaceuticals 18 (2003), no. 3, 339–353.

    Article  CAS  Google Scholar 

  6. W. P. Faulk and G. M. Taylor, Immunocolloid method for electron microscope, Immunochem-istry 8 (1971), no. 11, 1081–1083.

    Article  PubMed  CAS  Google Scholar 

  7. M. Lundqvist, I. Sethson and B. H. Jonsson, Protein adsorption onto silica nanoparticles: Conformational changes depend on the particles’ curvature and the protein stability, Langmuir 20 (2004), no. 24, 10639–10647.

    Article  PubMed  CAS  Google Scholar 

  8. W. R. Glomm, Functionalized gold nanoparticles for applications in bionanotechnology, Journal of Dispersion Science and Technology 26 (2005), no. 3, 389–414.

    Article  CAS  Google Scholar 

  9. V. Maximov, V. Reukov and A. Vertegel, Targeted delivery of therapeutic enzymes, Journal of Drug Delivery Science and Technology 19 (2009), no. 5, 311–320.

    CAS  Google Scholar 

  10. A. V. Elgersma, R. L. J. Zsom, W. Norde and J. Lyklema, The adsorption of bovine serum-albumin on positively and negatively charged polystyrene lattices, Journal of Colloid and Interface Science 138 (1990), no. 1, 145–156.

    Article  CAS  Google Scholar 

  11. W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell and A. P. Alivisatos, Biological applications of colloidal nanocrystals, Nanotechnology 14 (2003), no. 7, R15–R27.

    Article  CAS  Google Scholar 

  12. I. Brigger, C. Dubernet and P. Couvreur, Nanoparticles in cancer therapy and diagnosis, Advanced Drug Delivery Reviews 54 (2002), no. 5, 631–651.

    Article  PubMed  CAS  Google Scholar 

  13. J. M. Nam, C. S. Thaxton and C. A. Mirkin, Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins, Science 301 (2003), no. 5641, 1884–1886.

    Article  PubMed  CAS  Google Scholar 

  14. C. M. Niemeyer, Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science, Angewandte Chemie – International Edition 40 (2001), no. 22, 4128–4158.

    Article  CAS  Google Scholar 

  15. T. J. Webster, L. S. Schadler, R. W. Siegel and R. Bizios, Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin, Tissue Engineering 7 (2001), no. 3, 291–301.

    Article  PubMed  CAS  Google Scholar 

  16. C. K. Bower, S. Sananikone, M. K. Bothwell and J. McGuire, Activity losses among T4 lysozyme charge variants after adsorption to colloidal silica, Biotechnology and Bioengineering 64 (1999), no. 3, 373–376.

    Article  PubMed  CAS  Google Scholar 

  17. C. Czeslik and R. Winter, Effect of temperature on the conformation of lysozyme adsorbed to silica particles, Physical Chemistry Chemical Physics 3 (2001), no. 2, 235–239.

    Article  CAS  Google Scholar 

  18. A. Kondo, F. Murakami, M. Kawagoe and K. Higashitani, Kinetic and circular-dichroism studies of enzymes adsorbed on ultrafine silica particles, Applied Microbiology and Biotechnology 39 (1993), no. 6, 726–731.

    Article  PubMed  CAS  Google Scholar 

  19. W. Norde and A. C. I. Anusiem, Adsorption, desorption and readsorption of proteins on solid-surfaces, Colloids and Surfaces 66 (1992), no. 1, 73–80.

    Article  CAS  Google Scholar 

  20. D. J. A. Crommelin, G. Storm, W. Jiskoot, R. Stenekes, E. Mastrobattista and W. E. Hennink, Nanotechnological approaches for the delivery of macromolecules, Journal of Controlled Release 87, 2003, no. 1–3, 81–88.

    Article  PubMed  CAS  Google Scholar 

  21. K. L. Heredia and H. D. Maynard, Synthesis of protein–polymer conjugates, Organic & Biomolecular Chemistry 5 (2007), no. 1, 45–53.

    Article  CAS  Google Scholar 

  22. J. Kim, J. W. Grate and P. Wang, Nanostructures for enzyme stabilization, Chemical Engineering Science 61 (2006), no. 3, 1017–1026.

    Article  CAS  Google Scholar 

  23. A. A. Vertegel, R. W. Siegel and J. S. Dordick, Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme, Langmuir 20 (2004), no. 16, 6800–6807.

    Article  PubMed  CAS  Google Scholar 

  24. P. A. J. Henricks and F. P. Nijkamp, Reactive oxygen species as mediators in asthma, Pulmonary Pharmacology & Therapeutics 14 (2001), no. 6, 409–421.

    Article  CAS  Google Scholar 

  25. W. Domej, Z. Foldes-Papp, E. Flogel and B. Haditsch, Chronic obstructive pulmonary disease and oxidative stress, Current Pharmaceutical Biotechnology 7 (2006), no. 2, 117–123.

    Article  PubMed  CAS  Google Scholar 

  26. E. J. Park and K. Park, Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro, Toxicology Letters 184 (2009), no. 1, 18–25.

    Article  PubMed  CAS  Google Scholar 

  27. H. S. Park, S. R. Kim and Y. C. Lee, Impact of oxidative stress on lung diseases, Respirology 14 (2009), no. 1, 27–38.

    Article  PubMed  Google Scholar 

  28. I. Rahman, Oxidative stress and gene transcription in asthma and chronic obstructive pulmonary disease: Antioxidant therapeutic targets, Current Drug Targets. Inflammation and Allergy 1 (2002), no. 3, 291–315.

    Article  PubMed  CAS  Google Scholar 

  29. J. J. Arcaroli, J. E. Hokanson, E. Abraham, M. Geraci, J. R. Murphy, R. P. Bowler, C. A. Dinarello, L. Silveira, J. Sankoff, D. Heyland, P. Wischmeyer and J. D. Crapo, Extracellular superoxide dismutase haplotypes are associated with acute lung injury and mortality, American Journal of Respiratory and Critical Care Medicine 179 (2009), no. 2, 105–112.

    Article  PubMed  CAS  Google Scholar 

  30. C. Vaissiere, V. Le Cabec and I. Maridonneau-Parini, NADPH oxidase is functionally assembled in specific granules during activation of human neutrophils, Journal of Leukocyte Biology 65 (1999), no. 5, 629–634.

    PubMed  CAS  Google Scholar 

  31. K. K. Griendling, D. Sorescu and M. Ushio-Fukai, NAD(P)H oxidase – role in cardiovascular biology and disease, Circulation Research 86 (2000), no. 5, 494–501.

    Article  PubMed  CAS  Google Scholar 

  32. A. S. Baldwin, The NF-kappa B and I kappa B proteins: New discoveries and insights, Annual Review of Immunology 14 (1996), 649–683.

    Article  PubMed  CAS  Google Scholar 

  33. R. Shenkar, M. D. Schwartz, L. S. Terada, J. E. Repine, J. McCord and E. Abraham, Hemorrhage activates NF-kappa B in murine lung mononuclear cells in vivo, American Journal of Physiology – Lung Cellular and Molecular Physiology 270 (1996), no. 5, L729–L735.

    CAS  Google Scholar 

  34. T. S. Blackwell and J. W. Christman, The role of nuclear factor-kappa B in cytokine gene regulation, American Journal of Respiratory Cell and Molecular Biology 17 (1997), no. 1, 3–9.

    PubMed  CAS  Google Scholar 

  35. K. Yasui and A. Baba, Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation, Inflammation Research 55 (2006), no. 9, 359–363.

    Article  PubMed  CAS  Google Scholar 

  36. M. P. Lehucker-Michel, J. F. Lesgards, O. Delubac, P. Stocker, P. Durand and M. Prost, Oxidative stress and human disease: Current knowledge and perspectives for prevention, Presse Médicale 30 (2001), no. 21, 1076–1081.

    Google Scholar 

  37. I. Rahman and W. MacNee, Role of oxidants/antioxidants in smoking-induced lung diseases, Free Radical Biology and Medicine 21 (1996), no. 5, 669–681.

    Article  PubMed  CAS  Google Scholar 

  38. M. Nishikawa, M. Kudo, N. Kakemizu, H. Ikeda and T. Okubo, Role of superoxide anions in airway hyperresponsiveness induced by cigarette smoke in conscious guinea pigs, Lung 174 (1996), no. 5, 279–289.

    Article  PubMed  CAS  Google Scholar 

  39. M. Tsuchiya, D. F. T. Thompson, Y. J. Suzuki, C. E. Cross and L. Packer, Superoxide formed from cigarette-smoke impairs polymorphonuclear leukocyte active oxygen generation activity, Archives of Biochemistry and Biophysics 299 (1992), no. 1, 30–37.

    Article  PubMed  CAS  Google Scholar 

  40. K. Ito and P. J. Barnes, COPD as a disease of accelerated lung aging, Chest 135 (2009), no. 1, 173–180.

    Article  PubMed  Google Scholar 

  41. W. A. Pryor, Cigarette smoke and the involvement of free radical reactions in chemical carcinogenesis, British Journal of Cancer. Supplement 55 (1987), no. VIII, 19–23.

    CAS  Google Scholar 

  42. D. F. Church and W. A. Pryor, Free-radical chemistry of cigarette-smoke and its toxicological implications, Environmental Health Perspectives 64 (1985), 111–126.

    Article  PubMed  CAS  Google Scholar 

  43. W. A. Pryor and S. S. Godber, Oxidative stress status – an introduction, Free Radical Biology and Medicine 10 (1991), no. 3–4, 173–173.

    Article  PubMed  CAS  Google Scholar 

  44. T. Nakayama, D. F. Church and W. A. Pryor, Quantitative-analysis of the hydrogen-peroxide formed in aqueous cigarette tar extracts, Free Radical Biology and Medicine 7 (1989), no. 1, 9–15.

    Article  PubMed  CAS  Google Scholar 

  45. T. Nakayama, M. Kodama and C. Nagata, Generation of hydrogen-peroxide and superoxide anion radical from cigarette-smoke, Gann 75 (1984), no. 2, 95–98.

    PubMed  CAS  Google Scholar 

  46. M. Nishikawa, N. Kakemizu, T. Ito, M. Kudo, T. Kaneko, M. Suzuki, N. Udaka, H. Ikeda and T. Okubo, Superoxide mediates cigarette smoke-induced infiltration of neutrophils into the airways through nuclear factor-kappa b activation and IL-8 mRNA expression in guinea pigs in vivo, American Journal of Respiratory Cell and Molecular Biology 20 (1999), no. 2, 189–198.

    PubMed  CAS  Google Scholar 

  47. A. H. Assa’ad, E. T. Ballard, K. D. Sebastian, D. P. Loven, G. P. Boivin and M. B. Lierl, Effect of superoxide dismutase on a rabbit model of chronic allergic asthma, Annals of Allergy Asthma & Immunology 80 (1998), no. 3, 215–224.

    Article  Google Scholar 

  48. A. Garcia-Gonzalez, J. Herrera-Abarca and J. L. Ochoa, Effect of superoxide dismutase from bovine erythrocytes on different activity parameters in adjuvant-induced arthritis, Archives of Medical Research 30 (1999), no. 2, 132–137.

    Article  PubMed  CAS  Google Scholar 

  49. N. Skorohod and D. B. Yeates, Superoxide dismutase failed to attenuate allergen-induced nasal congestion in ragweed-sensitized dogs, Journal of Applied Physiology 98 (2005), no. 4, 1478–1486.

    Article  PubMed  CAS  Google Scholar 

  50. S. Das, S. Horowitz, C. G. Robbins, M. E. El-Sabban, N. Sahgal and J. M. Davis, Intracellular uptake of recombinant superoxide dismutase after intratracheal administration, American Journal of Physiology – Lung Cellular and Molecular Physiology 274 (1998), no. 5, L673–L677.

    CAS  Google Scholar 

  51. E. G. Langenback, J. M. Davis, C. Robbins, N. Sahgal, R. J. Perry and S. R. Simon, Improved pulmonary distribution of recombinant human Cu/Zn superoxide dismutase, using a modified ultrasonic nebulizer, Pediatric Pulmonology 27 (1999), no. 2, 124–129.

    Article  PubMed  CAS  Google Scholar 

  52. S. Giovagnoli, P. Blasi, M. Ricci and C. Rossi, Biodegradable microspheres as carriers for native superoxide dismutase and catalase delivery, AAPS Pharmscitech 5 (2004), no. 4, e51.

    Article  PubMed  Google Scholar 

  53. S. Giovagnoli, G. Luca, I. Casaburi, P. Blasi, G. Macchiarulo, M. Ricci, M. Calvitti, G. Basta, R. Calafiore and C. Rossi, Long-term delivery of superoxide dismutase and catalase entrapped in poly(lactide-co-glycolide) microspheres: In vitro effects on isolated neonatal porcine pancreatic cell clusters, Journal of Controlled Release 107 (2005), no. 1, 65–77.

    Article  PubMed  CAS  Google Scholar 

  54. L. A. Dailey, N. Jekel, L. Fink, T. Gessler, T. Schmehl, M. Wittmar, T. Kissel and W. Seeger, Investigation of the proinflammatory potential of biodegradable nanoparticle drug delivery ­systems in the lung, Toxicology and Applied Pharmacology 215 (2006), no. 1, 100–108.

    Article  PubMed  CAS  Google Scholar 

  55. S. Lee, S. C. Yang, M. J. Heffernan, W. R. Taylor and N. Murthy, Polyketal microparticles: A new delivery vehicle for superoxide dismutase, Bioconjugate Chemistry 18 (2007), no. 1, 4–7.

    Article  PubMed  CAS  Google Scholar 

  56. M. C. Gongora, H. E. Lob, U. Landmesser, T. J. Guzik, W. D. Martin, K. Ozumi, S. M. Wall, D. S. Wilson, N. Murthy, M. Gravanis, T. Fukai and D. G. Harrison, Loss of extracellular superoxide dismutase leads to acute lung damage in the presence of ambient air – a potential mechanism underlying adult respiratory distress syndrome, American Journal of Pathology 173 (2008), no. 4, 915–926.

    Article  PubMed  CAS  Google Scholar 

  57. M. K. Reddy, L. Wu, W. Kou, A. Ghorpade and V. Labhasetwar, Superoxide dismutase-loaded PLGA nanoparticles protect cultured human neurons under oxidative stress, Applied Biochemistry and Biotechnology 151 (2008), no. 2–3, 565–577.

    Article  PubMed  CAS  Google Scholar 

  58. M. K. Reddy and V. Labhasetwar, Nanoparticle-mediated delivery of superoxide dismutase to the brain: An effective strategy to reduce ischemia-reperfusion injury, FASEB Journal 23 (2009), no. 5, 1384–1395.

    Article  PubMed  CAS  Google Scholar 

  59. D. J. Begley, Delivery of therapeutic agents to the central nervous system: The problems and the possibilities, Pharmacology & Therapeutics 104 (2004), no. 1, 29–45.

    Article  CAS  Google Scholar 

  60. U. Schroeder, P. Sommerfeld, S. Ulrich and B. A. Sabel, Nanoparticle technology for delivery of drugs across the blood–brain barrier, Journal of Pharmaceutical Sciences 87 (1998), no. 11, 1305–1307.

    Article  PubMed  CAS  Google Scholar 

  61. V. Reukov, J. Olbrich, R. Satishkumar and A. Vertegel, Protein–nanoparticle conjugates as a potential therapeutic agents for treatment of secondary spinal cord injury, Proceedings of the MRS 2007 Fall Meeting, Materials Research Society, 2007, 6–16.

    Google Scholar 

  62. J. I. Weitz, R. J. Stewart and J. C. Fredenburgh, Mechanism of action of plasminogen activators, Thrombosis and Haemostasis 82 (1999), no. 2, 974–982.

    PubMed  CAS  Google Scholar 

  63. E. Haber, T. Quertermous, G. R. Matsueda and M. S. Runge, Innovative approaches to plasminogen-activator therapy, Science 243 (1989), no. 4887, 51–56.

    Article  PubMed  CAS  Google Scholar 

  64. K. Huber, M. S. Runge, C. Bode and D. Gulba, Thrombolytic therapy in acute myocardial infarction – update 1996, Annals of Hematology 73 (1996), S29–S38.

    Article  PubMed  CAS  Google Scholar 

  65. N. M. Orekhova, R. S. Akchurin, A. A. Belyaev, M. D. Smirnov, S. E. Ragimov and A. N. Orekhov, Local prevention of thrombosis in animal arteries by means of magnetic targeting of aspirin-loaded red-cells, Thrombosis Research 57 (1990), no. 4, 611–616.

    Article  PubMed  CAS  Google Scholar 

  66. C. F. Driscoll, R. M. Morris, A. E. Senyei, K. J. Widder and G. S. Heller, Magnetic targeting of microspheres in blood-flow, Microvascular Research 27 (1984), no. 3, 353–369.

    Article  PubMed  CAS  Google Scholar 

  67. V. P. Torchilin, M. I. Papisov and V. N. Smirnov, Magnetic sephadex as a carrier for enzyme ­immobilization and drug targeting, Journal of Biomedical Materials Research 19 (1985), no. 4, 461–466.

    Article  PubMed  CAS  Google Scholar 

  68. C. Alexiou, W. Arnold, P. Hulin, R. J. Klein, H. Renz, F. G. Parak, C. Bergemann and A. S. Lubbe, Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting, Journal of Magnetism and Magnetic Materials 225 (2001), 187–193.

    Article  CAS  Google Scholar 

  69. Y. H. Ma, Y. W. Hsu, Y. J. Chang, M. Y. Hua, J. P. Chen and T. Wu, Intra-arterial application of magnetic nanoparticles for targeted thrombolytic therapy: A rat embolic model, Journal of Magnetism and Magnetic Materials 311 (2007), no. 1, 342–346.

    Article  CAS  Google Scholar 

  70. G. Gregoriadis, A. T. Florence and H. M. Patel, Liposomes in drug delivery, Harwood Academic Publishers, Langhorne, PA (1993).

    Google Scholar 

  71. G. Gregoriadis, Liposome technology, CRC Press, Boca Raton, FL, 1–3, 2nd ed. (1993).

    Google Scholar 

  72. S. D. Tiukinhoy-Laing, S. L. Huang, M. Klegerman, C. K. Holland and D. D. McPherson, Ultrasound-facilitated thrombolysis using tissue-plasminogen activator-loaded echogenic liposomes, Thrombosis Research 119 (2007), no. 6, 777–784.

    Article  PubMed  CAS  Google Scholar 

  73. Y. Yurko, V. Maximov, E. Andreozzi, G. L. Thompson and A. A. Vertegel, Design of biomedical nanodevices for dissolution of blood clots, Materials Science & Engineering: C (Materials for Biological Applications) 29 (2009), no. 3, 737–741.

    Article  CAS  Google Scholar 

  74. M. L. Fernandez Guerrero, J. M. Ramos, J. Marrero, M. Cuenca, R. Fernandez Roblas and M. De Gorgolas, Bacteremic pneumococcal infections in immunocompromised patients without AIDS: The impact of beta-lactam resistance on mortality, International Journal of Infectious Diseases 7 (2003), no. 1, 46–52.

    Article  PubMed  Google Scholar 

  75. M. Zaiou, Multifunctional antimicrobial peptides: Therapeutic targets in several human diseases, Journal of Molecular Medicine 85 (2007), no. 4, 317–329.

    Article  PubMed  CAS  Google Scholar 

  76. F. Niyonsaba and H. Ogawa, Protective roles of the skin against infection: Implication of naturally occurring human antimicrobial agents beta-defensins, cathelicidin LL-37 and lysozyme, Journal of Dermatological Science 40 (2005), no. 3, 157–168.

    Article  PubMed  CAS  Google Scholar 

  77. J. Kreuter and P. P. Speiser, New adjuvants on a polymethylmethacrylate base, Infection and Immunity 13 (1976), no. 1, 204–210.

    PubMed  CAS  Google Scholar 

  78. S. Henrymichelland, M. J. Alonso, A. Andremont, P. Maincen, J. Sauzieres and P. Couvreur, Attachment of antibiotics to nanoparticles - preparation, drug-release and antimicrobial activity in vitro, International Journal of Pharmaceutics 35 (1987), no. 1–2, 121–127.

    Article  CAS  Google Scholar 

  79. M. E. Page-Clisson, H. Pinto-Alphandary, E. Chachaty, P. Couvreur and A. Andremont, Drug targeting by polyalkylcyanoacrylate is not efficient against persistent salmonella, Pharmaceutical Research 15 (1998), no. 4, 544–549.

    Article  PubMed  CAS  Google Scholar 

  80. F. Esmaeili, M. Hosseini-Nasr, M. Rad-Malekshahi, N. Samadi, F. Atyabi and R. Dinarvand, Preparation and antibacterial activity evaluation of rifampicin-loaded poly lactide-co-glycolide nanoparticles, Nanomedicine – Nanotechnology Biology and Medicine 3 (2007), no. 2, 161–167.

    Article  CAS  Google Scholar 

  81. S. Salmaso, N. Elvassore, A. Bertucco, A. Lante and P. Caliceti, Nisin-loaded poly- l -­lactide nano-particles produced by Co 2 anti-solvent precipitation for sustained antimicrobial activity, International Journal of Pharmaceutics 287 (2004), no. 12, 163–173.

    Article  PubMed  CAS  Google Scholar 

  82. L. W. Qu, P. G. Luo, S. Taylor, Y. Lin, W. J. Huang, N. Anyadike, T. R. J. Tzeng, F. Stutzenberger, R. A. Latour and Y. P. Sun, Visualizing adhesion-induced agglutination of Escherichia coli with mannosylated nanoparticles, Journal of Nanoscience and Nanotechnology 5 (2005), no. 2, 319–322.

    Article  PubMed  CAS  Google Scholar 

  83. P. J. G. Luo, T. R. Tzeng, L. W. Qu, Y. Lin, E. Caldwell, R. A. Latou, F. Stutzenberger and Y. P. Sun, Quantitative analysis of bacterial aggregation mediated by bioactive nanoparticles, Journal of Biomedical Nanotechnology 1 (2005), no. 3, 291–296.

    Article  CAS  Google Scholar 

  84. L. W. Qu, L. R. Gu, H. P. Li, S. Taylor, T. Elkin, P. J. G. Luo, T. R. J. Tzeng, X. P. Jiang, R. A. Latour, F. Stutzenberger, A. Williams and Y. P. Sun, Galactosylated polymeric nanoparticles: Synthesis and adhesion interactions with Escherichia coli, Journal of Biomedical Nanotechnology 1 (2005), no. 1, 61–67.

    Article  CAS  Google Scholar 

  85. H. Yang, L. W. Qu, A. Wimbrow, X. P. Jiang and Y. P. Sun, Enhancing antimicrobial activity of lysozyme against Listeria monocytogenes using immunonanoparticles, Journal of Food Protection 70 (2007), no. 8, 1844–1849.

    PubMed  CAS  Google Scholar 

  86. R. Satishkumar and A. Vertegel, Charge-directed targeting of antimicrobial protein–nanoparticle conjugates, Biotechnology and Bioengineering 100 (2008), no. 3, 403–412.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vertegel, A.A., Reukov, V., Maximov, V. (2011). Enzyme–Nanoparticle Conjugates for Biomedical Applications. In: Minteer, S. (eds) Enzyme Stabilization and Immobilization. Methods in Molecular Biology, vol 679. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-895-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-895-9_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-894-2

  • Online ISBN: 978-1-60761-895-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics