Advertisement

Enzyme Immobilization in Polyelectrolyte Microcapsules

  • Michael J. McShane
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 679)

Abstract

Polyelectrolyte capsules have generated great interest in the biotechnology field, because of the facile methods for formation, the broad range of materials that may be used and nanocomposite wall structures that may be realized, and the potential to encapsulate biologically active molecules such as proteins. Immobilization of enzymes within polyelectrolyte microcapsules (PMs) can be accomplished through several different pathways, primarily categorized by the stage of enzyme introduction into the capsule – before capsule formation, by incorporation into the template, or after capsule formation, via diffusion, precipitation, or other means, followed by “sealing” the enzyme inside the capsule by changing the permeability of the walls. The different approaches result in varying efficiency of encapsulation, and the methods employed will affect different enzymes in different ways. This chapter aims to provide a detailed description of one well-established, efficient method for entrapping enzymes and includes notes about modifications for different proteins.

Key words

Microcapsules Polyelectrolytes Nanoassembly Layer-by-layer self assembly Multilayer 

References

  1. 1.
    Sukhorukov, G. B., Donath, E., Davis, S., Lichtenfeld, H., Caruso, F., Popov, V. I., and Mohwald, H. (1998) Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design, Polymers for Advanced Technologies 9, 759–767.CrossRefGoogle Scholar
  2. 2.
    Donath, E., Sukhorukov, G. B., and Mohwald, H. (1999) Submicrometric and micrometric polyelectrolyte capsules, Nachrichten Aus Chemie Technik Und Laboratorium 47, 400.CrossRefGoogle Scholar
  3. 3.
    Mohwald, H. (2000) From Langmuir monolayers to nanocapsules, Colloids and Surfaces. A, Physicochemical and Engineering Aspects 171, 25–31.CrossRefGoogle Scholar
  4. 4.
    Donath, E., Soukhorukov, G. B., and Mohwald, H. (2000) Novel self-assembled polyelectrolyte multilayer nano- and microcapsules with tailored properties and functions., Abstracts of Papers of the American Chemical Society 219, U517–U517.Google Scholar
  5. 5.
    Donath, E., Soukhorukov, G. B., Moya, S., Voigt, A., Lichtenfeld, H., Dahne, L., Gao, C. Y., and Mohwald, H. (2000) Polyelectrolyte-multilayer capsules templated on latex particles and biological cells: fabrication and properties., Abstracts of Papers of the American Chemical Society 219, U583–U583.Google Scholar
  6. 6.
    Moya, S., Sukhorukov, G. B., Auch, M., Donath, E., and Mohwald, H. (1999) Microencapsulation of organic solvents in polyelectrolyte multilayer micrometer-sized shells, Journal of Colloid and Interface Science 216, 297–302.PubMedCrossRefGoogle Scholar
  7. 7.
    Caruso, F., Trau, D., Mohwald, H., and Renneberg, R. (2000) Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules, Langmuir 16, 1485–1488.CrossRefGoogle Scholar
  8. 8.
    Sukhorukov, G., Dahne, L., Hartmann, J., Donath, E., and Mohwald, H. (2000) Controlled precipitation of dyes into hollow polyelectrolyte capsules based on colloids and biocolloids, Advanced Materials 12, 112–115.CrossRefGoogle Scholar
  9. 9.
    Balabushevitch, N. G., Sukhorukov, G. B., Moroz, N. A., Volodkin, D. V., Larionova, N. I., Donath, E., and Mohwald, H. (2001) Encapsulation of proteins by layer-by-layer adsorption of polyelectrolytes onto protein aggregates: factors regulating the protein release, Biotechnology and Bioengineering 76, 207–213.PubMedCrossRefGoogle Scholar
  10. 10.
    Lvov, Y., Antipov, A. A., Mamedov, A., Mohwald, H., and Sukhorukov, G. B. (2001) Urease encapsulation in nanoorganized microshells, Nano Letters 1, 125–128.CrossRefGoogle Scholar
  11. 11.
    Sukhorukov, G. B., Antipov, A. A., Voigt, A., Donath, E., and Mohwald, H. (2001) pH-controlled macromolecule encapsulation in and release from polyelectrolyte multilayer nanocapsules, Macromolecular Rapid Communications 22, 44–46.CrossRefGoogle Scholar
  12. 12.
    Radtchenko, I. L., Sukhorukov, G. B., and Mohwald, H. (2002) A novel method for encapsulation of poorly water-soluble drugs: precipitation in polyelectrolyte multilayer shells, International Journal of Pharmaceutics 242, 219–223.PubMedCrossRefGoogle Scholar
  13. 13.
    Antipov, A. A., Shchukin, D., Fedutik, Y., Petrov, A. I., Sukhorukov, G. B., and Mohwald, H. (2003) Carbonate microparticles for hollow polyelectrolyte capsules fabrication, Colloids and Surfaces, A. Physicochemical and Engineering Aspects 224, 175–183.CrossRefGoogle Scholar
  14. 14.
    Sukhorukov, G. B., Volodkin, D. V., Gunther, A. M., Petrov, A. I., Shenoy, D. B., and Mohwald, H. (2004) Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds, Journal of Materials Chemistry 14, 2073–2081.CrossRefGoogle Scholar
  15. 15.
    Petrov, A. I., Volodkin, D. V., and Sukhorukov, G. B. (2005) Protein–calcium carbonate coprecipitation: a tool for protein encapsulation, Biotechnology Progress 21, 918–925.PubMedCrossRefGoogle Scholar
  16. 16.
    Stein, E. W., Volodkin, D. V., McShane, M. J., and Sukhorukov, G. B. (2006) Real-time assessment of spatial and temporal coupled catalysis within polyelectrolyte microcapsules containing coimmobilized glucose oxidase and peroxidase, Biomacromolecules 7, 710–719.PubMedCrossRefGoogle Scholar
  17. 17.
    Volodkin, D. V., Larionova, N. I., and Sukhorukov, G. B. (2004) Protein encapsulation via porous CaCO3 microparticles templating, Biomacromolecules 5, 1962–1972.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Michael J. McShane
    • 1
  1. 1.Biomedical Engineering DepartmentTexas A&M UniversityCollege StationUSA

Personalised recommendations