Skip to main content

Enzyme Stabilization via Cross-Linked Enzyme Aggregates

  • Protocol
  • First Online:
Enzyme Stabilization and Immobilization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 679))

Abstract

Extensive cross-linking of a precipitate of a protein by a cross-linking reagent (glutaraldehyde has been most commonly used) creates an insoluble enzyme preparation called cross-linked enzyme aggregates (CLEAs). CLEAs show high stability and performance in both conventional aqueous media as well as nonaqueous media. These are also stable at fairly high temperatures. CLEAs having more than one kind of enzyme activity can be prepared and such CLEAs are called combi-CLEAs or multipurpose CLEAs. Extent of cross-linking often influences their morphology, stability, activity, and enantioselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wold, F. (1967) Bifunctional reagents. Methods Enzymol. 11, 617–640.

    Article  CAS  Google Scholar 

  2. Broun, G. B. (1976) Chemically aggregated enzymes. Methods Enzymol. 44, 263–280.

    Article  PubMed  CAS  Google Scholar 

  3. Gupta, M. N. (1993) Applications of crosslinking techniques to enzyme/protein stabilization and bioconjugate preparation. In Biocatalyst Design for Stability and Specificity (Himmel, M. E., and Georgiou, G., Eds.) pp 307–324, ACS Symposium Series American Chemical Society, Washington, DC.

    Chapter  Google Scholar 

  4. Sheldon, R. A., Schoevaart, R., and van Langen, L. M. (2006) Cross-linked enzyme aggregates. In Immobilization of Enzymes and Cells (Guisan, J. M., Ed.) pp 43, Humana Press, New Jersey.

    Google Scholar 

  5. van Langen, L. M., Selassa, R. P., van Rantwijk, F., and Sheldon, R. A. (2005) Cross-linked aggregates of (R)-oxynitrilase: A stable, recyclable biocatalyst for enantioselective hydrocyanation. Org. Lett. 7, 327–329.

    Article  PubMed  Google Scholar 

  6. Majumder, A. B., Mondal, K., Singh, T. P., and Gupta, M. N. (2008) Designing cross-linked lipase aggregates for optimum performance as biocatalysts. Biocatal. Biotransformation 26, 235–242.

    Article  CAS  Google Scholar 

  7. Dalal, S., Sharma, A., and Gupta, M. N. (2007) A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities. Chem. Cent. J. 1: 16.

    Article  PubMed  Google Scholar 

  8. Shah, S., Sharma, A., and Gupta, M. N. (2006) Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder. Anal. Biochem. 351, 207–213.

    Article  PubMed  CAS  Google Scholar 

  9. Sheldon, R. A. (2006) Immobilization of enzymes as cross-linked enzyme aggregates: A simple method for improving performance. In Biocatalysis in the Pharmaceutical and Biotechnology Industries (Patel, R. N., Ed.) pp 350–362, CRC Press, New York.

    Google Scholar 

  10. Illanes, A., Wilson, L., Caballero, E., Fernández-Lafuente, R., and Guisan, J. M. (2006) Cross-linked penicillin acylase aggregates for synthesis of β-lactam antibiotics in organic medium. Appl. Biochem. Biotechnol. 133, 189–202.

    Article  PubMed  CAS  Google Scholar 

  11. Ruiz Toral, A., de los Rios, A. P., Hernandez, F. J., Janssen, M. H. A., Schoevaart, R., van Rantwijk, F., and Sheldon, R. A. (2007) Cross-linked Candida antarctica lipase B is active in denaturing ionic liquids. Enzyme Microb. Technol. 40, 1095–1099.

    Article  Google Scholar 

  12. Shah, S., and Gupta, M. N. (2007) Kinetic resolution of (±)–1-phenylethanol in [Bmim][PF6] using high activity preparations of lipases. Bioorg. Med. Chem. Lett. 17, 921–924.

    Article  PubMed  CAS  Google Scholar 

  13. Hobbs, H. R., Kondor, B., Stephenson, P., Sheldon, R. A., Thomas, N. R., and Poliakoff, M. (2006) Continuous kinetic resolution catalysed by cross-linked enzyme aggregates, ‘CLEAs’, in supercritical CO2. Green Chem. 8, 816–821.

    Article  CAS  Google Scholar 

  14. Mateo, B., Chmura, A., Rustler, S., van Rantwijk, F., Stolz, A., and Sheldon, R. A. (2006) Synthesis of enantiomerically pure (S)-mandelic acid using an oxynitrilase–nitrilase bienzymatic cascade: a nitrilase surprisingly shows nitrile hydratase activity. Tetrahedron Asymm. 17, 320–323.

    Article  CAS  Google Scholar 

  15. St. Clair, N. L., and Navia, M. A. (1992) Cross-linked enzyme crystal as robust biocatalysts, J. Am. Chem. Soc. 114, 7314–7316.

    Article  CAS  Google Scholar 

  16. Mondal, K., Ramesh, N. G., Roy, I., and Gupta, M. N. (2006) Enhancing the synthetic utility of aldolase antibody 38C2. Bioorg. Med. Chem. Lett. 16, 807–810.

    Article  PubMed  CAS  Google Scholar 

  17. Wilson, L., Illanes, A., Abian, O., Pessela, B. C. C., Fernandez-Lafuente, R., and Guisán, J. M. (2004) Co-aggregation of penicillin G acylase and polyionic polymers: an easy methodology to prepare enzyme biocatalysts stable in organic media. Biomacromolecules 5, 852–857.

    Article  PubMed  CAS  Google Scholar 

  18. Kim, M. I., Kim, J., Lee, J., Jia, H., Na, H. B., Youn, J. K., Kwak, J. H., Dohnalkova, A., Grate, J. W., Wang, P., Hyeon, T., Park, H. G., Chang, H. N. (2007) Cross-linked enzyme aggregates in hierarchically-ordered mesoporous silica: A simple and effective method for enzyme stabilization. Biotechnol. Bioeng. 96, 210–218.

    Article  PubMed  CAS  Google Scholar 

  19. Hilal, N., Nigmatullin, R., and Alpatova, A. (2004) Immobilization of cross-linked lipase aggregates within microporous polymeric membranes. J. Memb. Sci. 238, 131–141.

    Article  CAS  Google Scholar 

  20. Mateo, C., Palomo, J. M., van Langen, L. M., Rantwijik, F. V., and Sheldon, R. A. (2004) A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol. Bioeng. 86, 273–276.

    Article  PubMed  CAS  Google Scholar 

  21. Bell, G., Halling, P. J., Moore, B. D., Partridge, J., and Rees, D. G. (1995) Biocatalyst behavior in low-water systems. Trends Biotechnol. 13, 468–473.

    Article  CAS  Google Scholar 

  22. Dalal, S., Kapoor, M., and Gupta, M. N. (2007) Preparation and characterization of combi-CLEAs catalyzing multiple non-cascade reactions. J. Mol. Catal. B: Enzym. 44, 128–132.

    Article  CAS  Google Scholar 

  23. Schoevaart R., Wolbers, M. W., Golubovic, M., Ottens, M., Kieboom, A. P. G., Rantwijik, F. V., van der Wielen, L. A. M., and Sheldon, R. A. (2004) Preparation, optimization, and structures of cross-linked enzyme aggregates (CLEAs). Biotechnol. Bioeng. 20, 754–762.

    Article  Google Scholar 

  24. Tyagi, R., Batra, R., and Gupta, M. N. (1999) Amorphous enzyme aggregates: stability towards heat and aqueous-organic cosolvent mixtures. Enzyme Microb. Technol. 24, 348–353.

    Article  CAS  Google Scholar 

  25. López-Gallego, F., Betancor, L., Hidalgo, A., Alonso, N., Fernandez-Láfuente, R., and Guisán, J. M. (2005) Co-aggregation of enzymes and polyethyleneimine: a simple method to prepare stable and immobilized derivatives of glutaryl acylase. Biomacromolecules 6, 1639–1842.

    Article  Google Scholar 

  26. Vaidya, A., and Fischer, L. (2006) Stabilization of new imprint property of glucose oxidase in pure aqueous medium by cross-linked-imprinting approach. In Immobilization of enzymes and cells (Guisan, J. M., Ed.) pp 175–183, Humana Press, New Jersey.

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by funds obtained from Department of Science and Technology and Department of Biotechnology, both Government of India organizations. Finally, we thank our research group members (past and present); Dr. Kalyani Mondal, Dr. Shweta Shah, Abir Majumder, and Sohel Dalal, whose work has been described/quoted in this chapter.

Prof. Finn Wold, while at University of Minnesota, St. Paul, USA, introduced bifunctional reagents (more frequently called cross-linking reagents) to protein chemistry. Consequently several subsequent developments including CLEA design were possible. Prof. Wold was one of the early mentors of one of the authors (Munishwar N. Gupta). This chapter is dedicated to the memory of Prof. Finn Wold who was a great scientist and a great human being.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munishwar N. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gupta, M.N., Raghava, S. (2011). Enzyme Stabilization via Cross-Linked Enzyme Aggregates. In: Minteer, S. (eds) Enzyme Stabilization and Immobilization. Methods in Molecular Biology, vol 679. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-895-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-895-9_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-894-2

  • Online ISBN: 978-1-60761-895-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics