Advertisement

Introduction to the Field of Enzyme Immobilization and Stabilization

  • Michael J. Moehlenbrock
  • Shelley D. MinteerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 679)

Abstract

Enzyme stabilization is important for any biomedical or industrial application of enzymes. In many applications, the goal is to provide extended active lifetime at normal environmental conditions with traditional substrates at low concentrations in buffered solutions. However, as enzymes are used for more and more applications, there is a desire to use them in extreme environmental conditions (i.e., high temperatures), in high substrate concentration, and in nontraditional solvent systems. This chapter introduces the topic of enzyme stabilization and the methods used for enzyme stabilization including enzyme immobilization.

Key words

Enzyme immobilization Enzyme stabilization Crosslinking Entrapment Encapsulation 

References

  1. 1.
    Hecky, J., and Muller, K. M. (2005) Structural perturbation and compensation by directed evolution at physiological temperature leads to thermostabilization of beta-lactamase, Biochemistry 44, 12640–12654.PubMedCrossRefGoogle Scholar
  2. 2.
    O’Fagain, C. (2003) Enzyme stabilization – recent experimental progress, Enzyme and Microbial Technology 33, 137–149.CrossRefGoogle Scholar
  3. 3.
    Liuu, J. H., Tsai, F. F., Liu, J. W., Cheng, K. J., and Cheng, C. L. (2001) The catalytic domain of a Piromyces rhizinflata cellulase expressed in E. coli was stabilized by the linker peptide of the enzyme, Enzyme and Microbial Technology 28, 582–589.CrossRefGoogle Scholar
  4. 4.
    Matsura, T., Miyai, K., Trakulnaleamsai, S., Yomo, T., Shima, Y., Miki, S., Yamamoto, K., and Urabe, I. (1999) Evolutionary molecular engineering by random elongation mutagenesis, Nature Biotechnology 17, 58–61.CrossRefGoogle Scholar
  5. 5.
    Jeng, F. Y., and Lin, S. C. (2006) Characterization and application of PEGylated horseradish peroxidase for the synthesis of poly(2-naphthol), Process Biochemistry 41, 1566–1573.CrossRefGoogle Scholar
  6. 6.
    Treetharnmathurot, B., Ovartlarnporn, C., Wungsintaweekul, J., Duncan, R., and Wiwattanapatapee, R. (2008) Effect of PEG molecular weight and linking chemistry on the biological activity and thermal stability of PEGylated trypsin, International Journal of Pharmaceutics 357, 252–259.PubMedCrossRefGoogle Scholar
  7. 7.
    Veronese, F. M. (2001) Peptide and protein PEGylation: a review of problems and solutions, Biomaterials 22, 405–417.PubMedCrossRefGoogle Scholar
  8. 8.
    Roberts, M. J., Bentley, M. D., and Harris, J. M. (2002) Chemistry of peptide and protein PEGylation, Advanced Drug Delivery Reviews 54, 459–476.PubMedCrossRefGoogle Scholar
  9. 9.
    Gomez, L., Ramırez, H. L., Villalonga, M. L., Hernandez, J., and Villalonga, R. (2006) Immobilization of chitosan-modified invertase on alginate-coated chitin support via polyelectrolyte complex formation, Enzyme and Microbial Technology 38, 22–27.CrossRefGoogle Scholar
  10. 10.
    Martinek, K., Klyachko, N. L., Kabanov, A. V., Khmel’nitskii, Y. L., and Levashov, A. V. (1989) Micellar enzymology: its relation to membranology, Biochimica et Biophysica Acta 981, 161–172.PubMedCrossRefGoogle Scholar
  11. 11.
    Martinek, K., Klyachko, N. L., Levashov, A. V., and Berezin , I. V. (1983) Micellar enzymology. Catalytic activity of peroxidase in a colloidal aqueous solution in an organic solvent, Doklady Akademii Nauk SSSR 263, 491–493.Google Scholar
  12. 12.
    Celej, M. S., D’Andrea, M. G., Campana, P. T., Fidelio, G. D., and Bianconi, M. L. (2004) Superactivity and conformational changes on chymotrypsin upon interfacial binding to cationic micelles, Biochemical Journal 378, 1059–1066.PubMedCrossRefGoogle Scholar
  13. 13.
    Cao, L. (2005) Immobilised enzymes: science or art?, Current Opinion in Chemical Biology 9, 217–226.PubMedCrossRefGoogle Scholar
  14. 14.
    Hanefeld, U., Gardossi, L., and Magner, E. (2009) Understanding enzyme immobilisation, Chemical Society Reviews 38, 453–468.PubMedCrossRefGoogle Scholar
  15. 15.
    Cooney, M. J., Svoboda, V., Lau, C., Martin, G. P., and Minteer, S. D. (2008) Enzyme catalysed biofuel cells, Energy & Environmental Science 1, 320–337.CrossRefGoogle Scholar
  16. 16.
    Kim, M. I., Kim, J., Lee, J., Jia, H., Na, H. B., Youn, J. K., Kwak, J. H., Dohnalkova, A., Grate, J. W., Wang, P., Hyeon, T., Park, H. G., and Chang, H. M. (2006) Crosslinked enzyme aggregates in hierarchically ordered mesoporous silica: a simple and effective method for enzyme stabilization, Biotechnology and Bioengineering 96, 210–218.CrossRefGoogle Scholar
  17. 17.
    Coche-Guerente, L., Cosnier, S., and Labbe, P. (1997) Sol-gel derived composite materials for the construction of oxidase/peroxidase mediatorless biosensors, Chemistry of Materials 9, 1348–1352.CrossRefGoogle Scholar
  18. 18.
    Lim, J., Malati, P., Bonet, F., and Dunn, B. (2007) Nanostructured sol-gel electrodes for biofuel cells, Journal of the Electrochemical Society 154, A140–A145.CrossRefGoogle Scholar
  19. 19.
    Nguyen, D. T., Smit, M., Dunn, B., and Zink, J. I. (2002) Stabilization of creatine kinase encapsulated in silicate sol-gel materials and unusual temperature effects on its activity, Chemistry of Materials 14, 4300–4306.CrossRefGoogle Scholar
  20. 20.
    Hussain, F., Birch, D. J. S., and Pickup, J. C. (2005) Glucose sensing based on the intrinsic fluorescence of sol-gel immobilized yeast hexokinase, Analytical Biochemistry 339, 137–143.PubMedCrossRefGoogle Scholar
  21. 21.
    Yang, R., Ruan, Y., and Deng, J. (1998) A H2O2 biosensor based on immobilization of horseradish peroxidase in electropolymerized methylene green film on GCE, Journal of Applied Electrochemistry 28, 1269–1275.CrossRefGoogle Scholar
  22. 22.
    Chiang, C.-J., Hsiau, L.-T., and Lee, W.-C. (2004) Immobilization of cell-associated enzymes by entrapment in polymethacrylamide beads, Biotechnology Techniques 11, 121–125.CrossRefGoogle Scholar
  23. 23.
    Moore, C. M., Akers, N. L., Hill, A. D., Johnson, Z. C., and Minteer, S. D. (2004) Improving the environment for immobilized dehydrogenase enzymes by modifying Nafion with tetraalkylammonium bromides, Biomacro­molecules 5, 1241–1247.PubMedCrossRefGoogle Scholar
  24. 24.
    Aston, W. J., and Turner, A. P. F. (1984) Biosensors and biofuel cells, Biotechnology and Genetic Engineering Reviews 1, 89–120.Google Scholar
  25. 25.
    Atanassov, P., Apblett, C., Banta, S., Brozik, S., Calabrese-Barton, S., Cooney, M. J., Liaw, B. Y., Mukerjee, S., and Minteer, S. D. (2007) Enzymatic biofuel cells, Electrochemical Society Interface 16, 28–31.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of ChemistrySaint Louis UniversitySt. LouisUSA

Personalised recommendations