Skip to main content

Correlates and Analysis of Motor Function in Humans and Animal Models of Parkinson’s Disease

  • Protocol
  • First Online:
Animal Models of Behavioral Analysis

Abstract

The purpose of this chapter is to first describe common clinical and laboratory tests and measures used to capture alterations in motor control in individuals with Parkinson’s disease (PD) and secondly, to detail both morphological and motor tests that are used in two rodent models of PD. For the description in humans, it is organized within the body structure and function and activity categories of the International Classification of Functioning, Disability, and Health (ICF). Specific tests discussed include the retropulsion test, turning test, Unified Parkinson’s Disease Rating Scale, Timed Up-and-Go, Berg Balance Scale, electromyography, quantitative digitography, motion analysis, and force plate perturbation. Testing procedure, set-up, and interpretation are described and examples of application in the PD population are provided. We hope that clinicians and researchers develop a beginning understanding of the different methods available for examining alterations in motor control in individuals with PD. Using the rat model of PD, we first describe in detail a new ultrastructural processing method that is used not only to process tissue but also to localize specific proteins that can then be used to correlate synaptic changes with motor alterations that are observed following depletion of dopamine. Finally, using a mouse model of PD, we describe three locomotor tests that can be quantified and correlated with the loss of dopamine-labeled neurons in the substantia nigra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Visser M, Marinus J, Bloem BR, Kisjes H, van den Berg BM, van Hilten JJ (2003) Clinical tests for the evaluation of postural instability in patients with Parkinson’s disease. Arch Phys Med Rehabil 84:1669–1674

    Article  PubMed  Google Scholar 

  2. Bloem BR, Beckley DJ, van Hilten BJ, Roos RAC (1998) Clinimetrics of postural instability in Parkinson’s disease. J Neurol 245:669–673

    Article  PubMed  CAS  Google Scholar 

  3. Xu D, Carlton LG, Rosengren KS (2004) Anticipatory postural adjustments for altering direction during walking. J Mot Behav 36:316–326

    Article  PubMed  Google Scholar 

  4. Stack E, Jupp K, Ashburn A (2004) Developing methods to evaluate how people with Parkinson’s disease turn 180 degrees: an activity frequently associated with falls. Disabil Rehabil 26:478–484

    Article  PubMed  CAS  Google Scholar 

  5. Stack EL, Ashburn AM, Jupp KE (2006) Strategies used by people with Parkinson’s disease who report difficulty turning. Parkinsonism Relat Disord 12:87–92

    Article  PubMed  Google Scholar 

  6. Crenna P, Carpinella I, Rabufetti M, Calabrese E, Mazzoleni P, Nemni R, Ferrarin M (2007) The association between impaired turning and normal straight walking in Parkinson’s disease. Gait Posture 26:172–178

    Article  PubMed  CAS  Google Scholar 

  7. Willems A, Nieuwboer A, Chavret F, Desloovere K, Dom R, Rochester L, Kwakkel G, van Ween E, Jones D (2007) Turning in Parkinson’s disease patients and controls: the effect of auditory cues. Mov Disord 22:1871–1878

    Article  PubMed  Google Scholar 

  8. Movement Disorders Task Force (2003) The Unified Parkinson’s Disease Rating Scale (UPDRS): status and recommendations. Mov Disord 18:738–750

    Article  Google Scholar 

  9. Stebbins GT, Goetz CG (1998) Factor structure of the Unified Parkinson’s Disease Rating Scale: motor examination section. Mov Disord 13:633–636

    Article  PubMed  CAS  Google Scholar 

  10. van Hilten JJ, van der Zwan AD, Zwinderman AH, Roos RAC (1994) Rating impairment and disability in Parkinson’s disease: evaluation of the Unified Parkinson’s Disease Rating Scale. Mov Disord 9:84–88

    Article  PubMed  Google Scholar 

  11. Richards M, Marder K, Cote L, Richard M (1994) Interrater reliability of the Unified Parkinson’s Disease Rating Scale motor examination. Mov Disord 9:89–91

    Article  PubMed  CAS  Google Scholar 

  12. Siderworf A, McDermott M, Kieburtz K, Blindauer K (2002) Test–retest reliability of the Unified Parkinson’s Disease Rating Scale in patients with early Parkinson’s disease: results from a multicenter clinical trial. Mov Disord 17:758–763

    Article  Google Scholar 

  13. Song J, Fisher BE, Petzinger G, Wu A, Gordon J, Salem GJ (2009) The relationship between the Unified Parkinson’s Disease Rating Scale and lower extremity functional performance in persons with early-stage Parkinson’s disease. Neurorehabil Neural Repair 23:657–661

    Article  PubMed  Google Scholar 

  14. Goetz CG, Tilley BC, Shaftman SR et al (2008) Movement disorder society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23:2129–2170

    Article  PubMed  Google Scholar 

  15. Podsiadlo D, Richardson S (1991) The timed “up & go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 38:142–148

    Google Scholar 

  16. Rockwood K, Awalt E, Carver D, MacKight C (2000) Feasibility and measurement properties of the functional reach and the timed up and go tests in the Canadian Study of Health and Aging. J Gerontol A Biol Sci Med Sci 55A:M70–M73

    Google Scholar 

  17. Steffen TM, Hacker TA, Mollinger L (2002) Age- and gender-related test performance in community-dwelling elderly people: six-minute walk test, Berg Balance Scale, timed up & go test, and gait speeds. Phys Ther 82:128–137

    PubMed  Google Scholar 

  18. Thompson M, Medley A (1995) Performance of community dwelling elderly on the timed up and go test. Phys Occ Ther Ger 13:17–30

    Article  Google Scholar 

  19. Shumway-Cook A, Brauer S, Woolacott M (2000) Predicting the probability for falls in community-dwelling older adults using the timed up & go test. Phys Ther 80:896–903

    PubMed  CAS  Google Scholar 

  20. Morris S, Morris ME, Iansek R (2001) Reliability of measurements obtained with the timed “up & go” test in people with Parkinson disease. Phys Ther 81:810–818

    PubMed  CAS  Google Scholar 

  21. Lim LIIK, van Wegen EEH, de Goede CJT, Jones D, Rochester L, Hetherington V, Nieuboer A, Willems AM, Kwakkel G (2005) Measuring gait and gait-related activities in Parkinson’s patients own home environment: a reliability, responsiveness and feasibility study. Parkinsonism Relat Disord 11:19–24

    Article  PubMed  CAS  Google Scholar 

  22. Campbell CM, Rowse JL, Ciol MA, Shumway-Cook A (2003) The effect of cognitive demand on timed up and go performance in older adults with and without Parkinson disease. Neurol Rep 27:2–6

    Google Scholar 

  23. Blum L, Korner-Bitensky N (2008) Usefulness of the Berg Balance Scale in stroke rehabilitation: a systematic review. Phys Ther 88:559–566

    Article  PubMed  Google Scholar 

  24. Landers MR, Backlund A, Davenport J, Fortune J, Schuerman S, Alktenburger P (2008) Postural instability in idiopathic Parkinson’s disease: discriminating fallers from nonfallers based on standardized clinical measures. J Neurol Phys Ther 30:60–67

    Google Scholar 

  25. Muir SW, Berg K, Chesworth B, Speechley M (2008) Predicting multiple falls in community-dwelling elderly people: a prospective study. Phys Ther 88:449–459

    Article  PubMed  Google Scholar 

  26. Wee JY, Wong H, Palepu A (2003) Validation of the Berg Balance Scale as a predictor of length of stay and discharge destination in stroke rehabilitation. Arch Phys Med Rehabil 84:731–735

    PubMed  Google Scholar 

  27. Bacher M, Scholz E, Diener HC (1989) 24 hour continuous tremor quantification based on EMG recording. Electroencephalogr Clin Neurophysiol 72:176–183

    Article  PubMed  CAS  Google Scholar 

  28. Qutubuddin AA, Pegg PO, Cifu DX, Brown R, McNamee S, Carne W (2005) Validating the Berg Balance Scale for patients with Parkinson’s disease: a key to rehabilitation evaluation. Arch Phys Med Rehabil 86:789–792

    Article  PubMed  Google Scholar 

  29. Steffen T, Seney M (2008) Test–retest reliability and minimal detectable change on balance and ambulation tests, the 36-item short-form health survey, and the Unified Parkinson Disease Rating Scale in people with parkinsonism. Phys Ther 88:733–746

    Article  PubMed  Google Scholar 

  30. Dibble LE, Lange M (2006) Predicting falls in individuals with Parkinson disease: a reconsideration of clinical balance measures. J Neurol Phys Ther 30:60–67

    PubMed  Google Scholar 

  31. Breit S, Spieker S, Schulz JB, Gasser T (2008) Long-term EMG recordings differentiate between parkinsonian and essential tremor. J Neurol 255:103–111

    Article  PubMed  CAS  Google Scholar 

  32. Scholz E, Bacher M, Diener HC, Dichgans J (1988) Twenty-four-hour tremor recordings in the evaluation of the treatment of Parkinson’s disease. J Neurol 235:475–484

    Article  PubMed  CAS  Google Scholar 

  33. Sturman MM, Vaillancourt DE, Metman LV, Bakay RAE, Corcos DM (2004) Effects of subthalamic nucleus stimulation and medication on resting and postural tremor in Parkinson’s disease. Brain 127:2131–2143

    Article  PubMed  Google Scholar 

  34. Blahak C, Bazner H, Capelle H, Wohrle JC, Weigel R, Henneriei MG, Krauss JK (2009) Rapid response of parkinsonian tremor to STN-DBS changes: direct modulation of oscillatory basal ganglia activity? Mov Disord 24:1221–1225

    Article  PubMed  Google Scholar 

  35. Bronte-Stewart HM, Ding L, Alexander C, Zhou Y, Moor GP (2000) Quantitative digitography (QDG): a sensitive measure of digital motor control in idiopathic Parkinson’s disease. Mov Disord 15:36–47

    Article  PubMed  CAS  Google Scholar 

  36. Brusse KJ, Zimdars S, Zalewski KR, Steffen TM (2005) Testing functional performance in people with Parkinson disease. Phys Ther 85:134–141

    PubMed  Google Scholar 

  37. Kelly VE, Hyngstrom AS, Rundle MM, Bastian AJ (2001) Interaction of levodopa and cues on voluntary reaching in Parkinson’s disease. Mov Disord 17:38–44

    Article  Google Scholar 

  38. Koop MM, Andrezejewski A, Hill BC, Heit G, Bronte-Stewart HM (2006) Improvement in a quantitative measure of bradykinesia after microelectrode recording in patients with Parkinson’s disease during deep brain stimulation surgery. Mov Disord 21:673–678

    Article  PubMed  Google Scholar 

  39. Latt MD, Menz HB, Fung VS, Lord SR (2009) Acceleration patterns of the head and pelvis during gait in older people with Parkinson’s disease: a comparison of fallers and nonfallers. J Gerontol A Biol Sci Med Sci 64A:700–706

    Article  Google Scholar 

  40. Koop MM, Shjivitz N, Bronte-Stewart H (2008) Quantitative measures of fine motor, limb, and postural bradykinesia in very early stage, untreated Parkinson’s disease. Mov Disord 23:1262–1268

    Article  PubMed  Google Scholar 

  41. Louie SL, Koop MM, Frenklach A, Bronte-Stewart H (2009) Quantitative lateralized measures of bradykinesia at different stages of Parkinson’s disease: the role of the less affected side. Mov Disord 24:1991–1997

    Article  PubMed  Google Scholar 

  42. Kavanagh JJ, Menz HB (2008) Accelerometry: a technique for quantifying movement patterns during walking. Gait Posture 28:1–15

    Article  PubMed  Google Scholar 

  43. Lord S, Rochester L, Baker K, Nieuwboer A (2008) Concurrent validity of accelerometry to measure gait in Parkinsons disease. Gait Posture 27:357–359

    Article  PubMed  Google Scholar 

  44. Saremi K, Marehbian J, Yan X, Regnaux J, Elashoff R, Bussel B, Dobkin BH (2006) Reliability and validity of bilateral thigh and foot accelerometry measures of walking in healthy and hemiparetic subjects. Neurorehabil Neural Repair 20:297–305

    Article  PubMed  Google Scholar 

  45. Windolf M, Gotzen N, Morlock M (2008) Systematic accuracy and precision analysis of video motion capturing systems – exemplified on the Vicon-460 system. J Biomech 41:2776–2780

    Article  PubMed  Google Scholar 

  46. Huxham F, Baker R, Morris ME, Iansek R (2008) Head and trunk rotation during walking turns in Parkinson’s disease. Mov Disord 23:1391–1397

    Article  PubMed  Google Scholar 

  47. Chien S, Lin S, Liang C, Soong Y, Lin S, Hsin Y, Lee C, Chen S (2006) The efficacy of quantitative gait analysis by the GAITRite system in evaluation of parkinsonian bradykinesia. Parkinsonims Relat Disord 12:438–442

    Article  Google Scholar 

  48. Nelson AJ, Zwick D, Brody S, Doran C, Pulver L, Rooz G, Sadownick M, Nelson R, Rothman J (2002) The validity of the GAITRite and the functional ambulation performance scoring system in the analysis of Parkinson gait. NeuroReabilitation 17:255–262

    Google Scholar 

  49. Ferrarin M (2006) Locomotor disorders in patient at early stages of Parkinson’s disease: a quantitative analysis. Conf Proc IEEE Eng Med Biol Soc 1:1224–1227

    PubMed  CAS  Google Scholar 

  50. Oates AR, Frank JS, Patla AE, VanOoteghem K, Horak FB (2008) Control of dynamic stability during gait termination on a slippery surface in Parkinson’s disease. Mov Disord 23:1977–1983

    PubMed  Google Scholar 

  51. Hof AL, Gazendam MG, Sinke WE (2005) The condition for dynamic stability. J Biomech 38:1–8

    Article  PubMed  CAS  Google Scholar 

  52. Song J, Fisher B, Sigward S, Petzinger G, Salem GJ (2008) The effect of early stage Parkinson’s disease on dynamic postural stability during turning activities. Paper presented at Society for Neuroscience Conference</pub>, Washington, DC

    Google Scholar 

  53. Dimitrova D, Horak FB, Nutt JG (2004) Postural muscle responses to multidirectional translations in patients with Parkinson’s disease. J Neurophysiol 91:489–501

    Article  PubMed  Google Scholar 

  54. Dimitrova D, Nutt J, Horak FB (2004) Abnormal force patterns for multidirectional postural responses in patients with Parkinson’s disease. Exp Brain Res 156:183–195

    Article  PubMed  Google Scholar 

  55. Horak FB, Dimitrova D, Nutt JG (2005) Direction-specific postural instability in subjects with Parkinson’s disease. Exp Neurol 193:504–521

    Article  PubMed  Google Scholar 

  56. Starr MS (1995a) Glutamate/dopamine D1/D2 balance in the basal ganglia and its relevance to Parkinson’s disease. Synapse 19:264–293

    Article  PubMed  CAS  Google Scholar 

  57. Starr MS (1995b) Antiparkinsonian actions of glutamate antagonists-alone and with l-DOPA: a review of evidence and suggestions for possible mechanisms. J Neural Transm [P-D Sect] 10:141–185

    Article  CAS  Google Scholar 

  58. Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11

    Article  PubMed  CAS  Google Scholar 

  59. McGeorge AJ, Faull RLM (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neurosci. 29:503–537

    Article  CAS  Google Scholar 

  60. Lacey CJ, Boyes J, Gerlach O, Chen L, Magill PJ, Bolam JP (2005) GABA-B receptors at glutamatergic synapses in the rat striatum. Neurosci 136:1083–1095

    Article  CAS  Google Scholar 

  61. Raju DV, Shah DJ, Wright TM, Hall RA, Smith Y (2006) Differential synaptology of vGluT2-containing thalamostriatal afferents between the patch and matrix compartments. J Comp Neurol 499:231–243

    Article  PubMed  CAS  Google Scholar 

  62. Smith Y, Raju DV, Pare JF, Sidibe M (2004) The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 27:520–527

    Article  PubMed  CAS  Google Scholar 

  63. Bouyer JJ, Park DH, Joh TH, Pickel VM (1984) Chemical and structural analysis of the relation between cortical inputs and tyrosine hydroxylase-containing terminals in rat neostriatum. Brain Res 302:267–275

    Article  PubMed  CAS  Google Scholar 

  64. Freund TF, Powell JF, Smith AD (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neurosci 13:1189–1215

    Article  CAS  Google Scholar 

  65. Gundersen V, Ottersen OP, Storm-Mathisen J (1996) Selective excitatory amino acid uptake in glutamatergic nerve terminals and in glia in the rat striatum: quantitative electron microscopic immunocytochemistry of exogenous (d)-aspartate and endogenous glutamate and GABA. Eur J Neurosci 8:758–765

    Article  PubMed  CAS  Google Scholar 

  66. Meshul CK, Stallbaumer RK, Taylor B, Janowsky A (1994) Haloperidol-induced synaptic changes in striatum are associated with glutamate synapses. Brain Res 648:181–195

    Article  PubMed  CAS  Google Scholar 

  67. Bamford NA, Robinson S, Palmiter R, Joyce JA, Moore C, Meshul CK (2004) Presynaptic modulation of corticostriatal terminals in dopamine-deficiency. J Neurosci 24:9541–9552

    Article  PubMed  CAS  Google Scholar 

  68. Morari M, O’Connor WT, Ungerstedt U, Fuxe J (1994) Dopamine D1 and D2 receptor antagonism differentially modulates stimulation of striatal neurotransmitter levels by N-methyl-d-aspartic acid. Eur J Pharm 256:23–30

    Article  CAS  Google Scholar 

  69. Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nature Rev 7:687–709

    Article  CAS  Google Scholar 

  70. Yamamoto BK, Davy S (1992) Dopaminergic modulation of glutamate release in striatum as measured by microdialysis. J Neurochem 58:1736–1742

    Article  PubMed  CAS  Google Scholar 

  71. Zhang H, Sulzer D (2003) Glutamate spillover in the striatum depresses dopaminergic transmission by activating group I metabotropic glutamate receptors. J Neurosci 19:10585–10592

    Google Scholar 

  72. Sesack SR, Aoki C, Pickel VM (1994) Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. J Neurosci 14:88–106

    PubMed  CAS  Google Scholar 

  73. Wang H, Pickel VM (2002) Dopamine D2 receptors are present in prefrontal cortical afferents and their targets in patches of the rat caudate-putamen nucleus. J Comp Neurol 442:392–404

    Article  PubMed  CAS  Google Scholar 

  74. Calabresi P, De Murtas M, Mercuri NB, Bernardi G (1992) Chronic neuroleptic treatment: D2 dopamine receptor supersensitivity and striatal glutamatergic transmission. Ann Neurol 31:366–373

    Article  PubMed  CAS  Google Scholar 

  75. Tillerson JL, Caudle WM, Reveron ME, Miller GW (2003) Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson’s disease. Neurosci 119:899–911

    Article  CAS  Google Scholar 

  76. Tillerson JL, Cohen AD, Philhower J, Miller GW, Zigmond MJ, Schallert T (2001) Forced limb-use effects on the behavioral and neurochemical effects of 6-hydroxydopamine. J Neurosci 21:4427–4435

    PubMed  CAS  Google Scholar 

  77. Poulton NP, Muir GD (2005) Treadmill training ameliorates dopamine loss but not behavioral deficits in hemi-Parkinsonian rats. Exp Neurol 193:181–197

    Article  PubMed  CAS  Google Scholar 

  78. Metz GA, Whishaw IQ (2002) Drug-induced rotation intensity in unilateral dopamine-depleted rats is not correlated with end point or qualitative measures of forelimb or hindlimb motor performance. Neuroscience 111:325–336

    Article  PubMed  CAS  Google Scholar 

  79. O’Dell SJ, Gross NB, Fricks AN, Casiano BD, Nguyen TB, Marshall JF (2007) Running wheel exercise enhances recovery from nigrostriatal dopamine injury without inducing neuroprotection. Neuroscience 144:1141–1151

    Article  PubMed  CAS  Google Scholar 

  80. Fisher BE, Petzinger GM, Nixon K, Hogg E, Bremmer S, Meshul CK, Jakowec MW (2004) Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse basal ganglia. J Neurosci Res 77:378–390

    Article  PubMed  CAS  Google Scholar 

  81. Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW (2002) The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 22:9134–9141

    PubMed  CAS  Google Scholar 

  82. Meshul CK, Kamel D, Moore C, Kay TS, Krentz L (2002) Nicotine alters striatal glutamate function and decreases the apomorphine-induced contralateral rotations in 6-OHDA lesioned rats. Exp Neurol 175:257–274

    Article  PubMed  CAS  Google Scholar 

  83. Bland ST, Gonzales RA, Schallert T (1999) Movement-related glutamate levels in rat hippocampus, striatum, and sensorimotor cortex. Neurosci Lett 277:119–122

    Article  PubMed  CAS  Google Scholar 

  84. Wolf ME, Xue CJ, Li Y, Wavak D (2000) Amphetamine increases glutamate efflux in the rat ventral tegmental area by a mechanism involving glutamate transporters and reactive oxygen species. J Neurochem 75:1634–1644

    Article  PubMed  CAS  Google Scholar 

  85. Meshul CK, Emre N, Nakamura CM, Allen C, Donohue MK, Buckman JF (1999) Time-dependent changes in striatal glutamate synapses following a 6-hydroxydopamine lesion. Neuroscience 88:1–16

    Article  PubMed  CAS  Google Scholar 

  86. Meshul CK, Allen C (2000) Haloperidol reverses the changes in striatal glutamatergic immunolabeling following a 6-OHDA lesion. Synapse 36:129–142

    Article  PubMed  CAS  Google Scholar 

  87. Cenci MA, Bjorklund. A (1993) Transection of corticostriatal afferents reduces amphetamine- and apomorphine-induced striatal Fos expression and turning behaviour in unilaterally 6-hydroxydopamine-lesioned rats. Eur J Neurosci 5:1062–1072

    Article  PubMed  CAS  Google Scholar 

  88. Holschneider DP, Yang J, Guo Y, Maarek JM (2007) Reorganization of functional brain maps after exercise training: importance of cerebellar–thalamic–cortical pathway. Brain Res 1184:96–107

    Article  PubMed  CAS  Google Scholar 

  89. Meeusen R, Smolders I, Sarre S, De Meirleir K, Keizer H, Serneels M, Ebinger G, Michotte Y (1997) Endurance training effects on neurotransmitter release in rat striatum: an in vivo microdialysis study. Acta Physiol Scand 159:335–341

    Article  PubMed  CAS  Google Scholar 

  90. Farmer J, Zhao X, van Praag H, Wodtke K, Gage FH, Christie BR (2004) Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124:71–79

    Article  PubMed  CAS  Google Scholar 

  91. Raju DV, Ahern TH, Shah DJ, Wright TM, Standaert DG, Hall RA, Smith Y (2008) Differential synaptic plasticity of the corticostriatal and thalamostriatal systems in an MPTP-treated monkey model of parkinsonism. Eur J Neurosci 27:1647–1658

    Article  PubMed  Google Scholar 

  92. Fremeau RT Jr, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ, Belloccho EE, Fortin D, Storm-Mathisen J, Edwards RH (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260

    Article  PubMed  CAS  Google Scholar 

  93. Dietrich MO, Mantese CE, Porciuncula LO, Ghisleni G, Vinade L, Souza DO, Portela LV (2005) Exercise affects glutamate receptors in postsynaptic densities from cortical mice brain. Brain Res 1065:20–25

    Article  PubMed  CAS  Google Scholar 

  94. Phend KD, Weinberg RJ, Rustioni A (1992) Techniques to optimize post-embedding single and double staining for amino acid neurotransmitters. J Histochem Cytochem 40:1011–1020

    Article  PubMed  CAS  Google Scholar 

  95. Kaneko T, Fujiyama F, Hioki H (2002) Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain. J Comp Neurol 444:39–62

    Article  PubMed  CAS  Google Scholar 

  96. Meredith GE, Kang UJ (2006) Behavioral models of Parkinson’s disease in rodents: a new look at an old problem. Movement Dis 21:1595–1606

    Article  PubMed  Google Scholar 

  97. Laviola G, Hannan AJ, Macri S, Solinas M, Jaber M (2008) Effects of enriched environment on animal models of neurodegenerative diseases and psychiatric disorders. Neurobiol Dis 31:159–168

    Article  PubMed  Google Scholar 

  98. Mora F, Segovia G, del Arco A (2007) Aging, plasticity, and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Br Res Rev 55:78–88

    Article  CAS  Google Scholar 

  99. Mora F, Segovia G, del Arco A (2008) Glutamate–dopamine–GABA interactions in the aging basal ganglia. Br Res Rev 58:340–353

    Article  CAS  Google Scholar 

  100. Bezard E, Dovero S, Belin D, Duconger S, Jackson-Lewis V, Przedborski S, Piazza PV, Gross CE, Jaber M (2003) Enriched environment confers resistance to 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine and cocaine: involvement of dopamine transporter and trophic factors. J Neurosci 23:10999–11007

    PubMed  CAS  Google Scholar 

  101. Fleming SM, Salcedo J, Fernagut PO, Rockenstein E, Maslia E, Levine MS, Chesselet MF (2004) Early and progressive sensorimotor anomalies in mice overexpressing wild-type human α-synuclein. Neurobio Dis 24:9434–9440

    CAS  Google Scholar 

  102. Fredriksson A, Danysz W, Quack G, Archer T (2001) Co-administration of memantine with sub/suprathreshold doses of l-Dopa restores motor behavior of MPTP-treated mice. J Neural Transmission 108:1435–1463

    Article  Google Scholar 

  103. Sundström E, Fredriksson A, Archer T (1990) Chronic neurochemical and behavioral changes in MPTP-lesioned C57Bl/6 mice: a model for Parkinson’s disease. Brain Res 528:181–188

    Article  PubMed  Google Scholar 

  104. Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S (1995) Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegen 4:257–269

    Article  CAS  Google Scholar 

  105. Unal-Çevik I, Kilinç M, Gürsoy-Özdemir Y, Gurer G,, Dalkara T (2004) Loss of NeuN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: a cautionary note. Brain Res 1015:169–174

    Article  PubMed  CAS  Google Scholar 

  106. Kamens HM, Crabbe JC (2007) The parallel rod floor test: a measure of ataxia in mice. Nat Protocols 2:277–281

    Article  Google Scholar 

  107. Kozell LB, Meshul CK (2001) The effects of acute or repeated cocaine administration on nerve terminal glutamate within the rat mesolimbic system. Neuroscience 106:15–25

    Article  PubMed  CAS  Google Scholar 

  108. Bezard E, Dovero S, Bioulac B, Gross CE (1997) Kinetics of nigral degeneration in a chronic model of MPTP-treated mice. Neurosci Lett 234:47–50

    Article  PubMed  CAS  Google Scholar 

  109. Ricaurte GA, Irwin I, Forno LS, DeLanney LE, Langston E, Langston JW (1987) Aging and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced degeneration of dopaminergic neurons in the substantia nigra. Br Res 403:43–51

    Article  CAS  Google Scholar 

  110. Fornai F, Schluter OM, Lenzi P, Gesi M, Ruffoli R, Ferrucci M, Lazzeri G, Busceti CL, Pontarelli F, Battaglia G, Pellegrini A, Nicoletti F, Ruggieri S, Paparelli A, Sudhof TC (2004) Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin–proteasome system and α-synuclein. Proc Natl Acad Sci (USA) 102:3413–3418

    Article  CAS  Google Scholar 

  111. Novikova L, Garris BL, Garris DR, Lau YS (2006) Early signs of neuronal apoptosis in the substantia nigra pars compacta of the progressive neurodegenerative mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid model of Parkinson’s disease. Cell Neurosci 140:67–76

    Article  CAS  Google Scholar 

  112. Petroske E, Meredith GE, Callen S, Totterdell S, Lau YS (2001) Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 106:589–601

    Article  PubMed  CAS  Google Scholar 

  113. Amende I, Kale A, McCue S, Glazier S, Morgan JP, Hampton TG (2005) Gait dynamics in mouse models of Parkinson’s disease and Huntington’s disease. J Neuroeng Rehabil 2:20–33

    Article  PubMed  Google Scholar 

  114. Nutt JG, Hammerstad JP, Gancher ST (1992) Parkinson’s disease: 100 maxims. Edward Arnold, London

    Google Scholar 

  115. Fahn S, Elton RL and UPDRS Development Committee (1987) Recent developments in Parkinson’s disease. Macmillan, Florham Park, NJ, pp 153–163

    Google Scholar 

  116. Pascual-Leone A, Amedi A, Fregni F, Merabet LB (2005) The plastic human brain cortex. Ann Rev Neurosci 28:377–401

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Veterans Affairs Merit Review program to CKM, Team Parkinson/Parkinson Alliance, NIH (RO1 NS44327), and the US Army NETRP (#W81XWH-04-1-0444) to GMP and MWJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles K. Meshul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schang, A.Y. et al. (2011). Correlates and Analysis of Motor Function in Humans and Animal Models of Parkinson’s Disease. In: Raber, J. (eds) Animal Models of Behavioral Analysis. Neuromethods, vol 50. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-883-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-883-6_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-882-9

  • Online ISBN: 978-1-60761-883-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics